
Manuel Rebol

Frame-To-Frame Consistent Semantic
Segmentation

MASTER’S THESIS

to achieve the university degree of

Diplom-Ingenieur

Master’s degree programme

Software Engineering and Management

submitted to

Graz University of Technology

Supervisor

Univ.-Prof. Dr.techn. Dipl.-Ing. Thomas Pock

Institute for Computer Graphics and Vision

Dipl.-Ing. Patrick Knöbelreiter, BSc

Institute for Computer Graphics and Vision

Graz, Austria, Jun. 2019

Abstract

Currently, most image understanding algorithms process single image data, although in

many applications video data could be recorded or is already available. This individual

processing leads to inconsistent scene interpretation because of the missing temporal infor-

mation. Consequently, physically implausible results are produced, which can be observed

when watching a predicted video sequence.

In this thesis we tackle this problem by training a convolutional neural network (CNN)

to perform frame-to-frame consistent semantic segmentation. We use a prediction oracle

to create missing ground-truth labels for video data together with a synthetic video data

set to train our model. In order to propagate features through the different time steps in a

scene, we implement recurrent convolutional layers. More precisely, we use long short term

memory (LSTM) and convolutions over the time dimension. Besides the temporal feature

propagation, we also add an inconsistency penalty to the loss function which enforces

frame-to-frame consistent prediction. The methods are evaluated with a newly created

VSSNet architecture as well as on the state-of-the art ESPNet architecture.

Results show that the performance improves for the VSSNet and for the ESPNet

when utilizing video information compared to single frame prediction. We evaluate our

models on the Cityscapes validation dataset. The mean intersection over union (mIoU)

on the 19 classes of the Cityscapes dataset increases from 44.0 % on single frame images to

56.5 % on video data for the ESPNet. When using an LSTM to propagate features trough

time, mIoU raises to 57.9 % while inconsistencies decrease from 2.4 % to 1.3 % which is an

improvement by 46.0 %.

The presented results suggest that the added temporal information gives frame-to-

frame consistent and more accurate image understanding compared to single frame pro-

cessing. This ensures that CNN architectures with few parameters and low computational

effort are already able to predict scenes accurately.

iii

Kurzfassung

Heutzutage verarbeiten die meisten Bildverarbeitungs- und Bilderkennungsalgorithmen

Einzelbilder, obwohl es vielen Anwendungsfällen möglich wäre Videodaten zu generieren

oder diese sogar schon vorliegen. Durch die separate Verarbeitung werden Szenen inkonsis-

tent interpretiert. Es entstehen physikalisch unplausible Ergebnisse, die beim betrachten

solcher Videosequenzen mit freiem Auge erkennbar sind.

In dieser Arbeit widmen wir uns diesem Problem. Wir verwenden die Methode des

überwachten Lernens mit Convolutional Neural Networks (CNNs) um innerhalb einer

Szene konsistente Semantische Segmentierung zu erzeugen. Um unser neuronales Netzw-

erk zu trainieren produzieren wir semantisch segmentierte Videodaten, indem wir auf das

bereits trainierte DeepLab Netzwerk zurückgreifen. Weiters versuchen wir auch synthetis-

che Szenen einfließen zu lassen. Die mittels des CNNs extrahierten Features propagieren

wir mithilfe von Recurrent Neural Networks (RNNs) von einem Bild zum nächsten in

einer Videoszene. Eine Convolutional Long Short-Term Memory (ConvLSTM) Schicht

innerhalb der Netzwerk Architektur ist hierfür verantwortlich. Um möglichst konsistente

Ergebnisse zu erhalten, bestrafen wir Inkonsistenzen während des Trainings in der Ziel-

funktion. Wir verwenden die selbst erzeuge Architektur VSSNet und die effiziente ESPNet

Architektur um die Methoden zu evaluieren.

Unsere Ergebnisse zeigen, dass wir die Semantische Segmentierung sowohl beim VSS-

Net als auch beim ESPNet verbessern können, wenn wir Videodaten verwenden. Wir

evaluieren unsere Modelle am Cityscapes Validierungsdatensatz. Die Mean Intersection

Over Union (mIoU) Metrik die wir Ã1
4ber die 19 Cityscapes Klassen berechnen, können wir

beim ESPNet von 44,0 % bei Einzelbildern auf 56,5 % bei Videodaten verbessern. Wenn

wir nun zusätzlich eine LSTM-Schicht hinzufügen, um die Feature über die Zeitachse

hinweg weiterzugeben, erreichen wir 57,9 % mIoU. Im gleichen Zug vermindern wir Inkon-

sistenzen von 2,4 % auf 1,3 %, was einer Verbesserung von 46,0 % entspricht.

Die präsentierten Ergebnisse unterstreichen die These, dass das in Betracht ziehen von

v

vi

Zeitabhängigkeiten in Videos konsistente und genaue Resultate hervorruft. Im direkten

Vergleich zu Einzelbildverarbeitung konnte eine deutliche Steigerung in der Bilderken-

nungsplausiblilität erzielt werden.

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than

the declared sources/resources, and that I have explicitly marked all material which has

been quoted either literally or by content from the used sources.

The text document uploaded to TUGRAZonline is identical to the presented master’s

thesis dissertation.

Place Date Signature

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als

die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich

und inhaltlich entnommene Stellen als solche kenntlich gemacht habe.

Das in TUGRAZonline hochgeladene Textdokument ist mit der vorliegenden Master-

arbeit identisch.

Ort Datum Unterschrift

Contents

1 Introduction 1

1.1 Image Analysis and Understanding . 2

1.2 Video Data . 3

1.3 Algorithm on Street Scenes . 4

2 Machine Learning and Neural Networks 7

2.1 Mathematical Notation and Conventions . 7

2.2 Machine Learning . 8

2.2.1 Classification & Regression . 9

2.2.2 Discriminative Models & Generative Models 10

2.2.3 Supervised Learning & Unsupervised Learning 10

2.2.4 Training the Algorithm . 11

2.3 Neural Networks . 13

2.3.1 Components of a Neural Network . 13

2.3.1.1 Activation Function . 13

2.3.1.2 Layers of Neurons . 15

2.3.2 Training a Neural Network . 16

2.4 Convolutional Neural Networks . 19

2.4.1 The Convolution Operation . 19

2.4.2 The Convolutional Layer . 21

2.4.3 Different Types of Convolutions . 23

2.4.4 Multiple Convolutional Layers in a CNN 25

3 Semantic Segmentation and Video Processing 29

3.1 Semantic Image Segmentation . 30

3.1.1 Segmentation . 30

ix

x

3.1.2 Semantics . 30

3.1.3 Semantic Segmentation with CNNs 31

3.2 Video Processing . 32

3.2.1 Optical Flow . 32

3.2.2 Frame-to-Frame Consistency . 33

3.3 Video Semantic Segmentation with Recurrent Neural Networks 34

3.3.1 Vanilla RNN . 34

3.3.2 LSTM . 34

3.3.3 LSTM and Video . 36

3.3.4 Convolutional LSTM . 36

3.3.5 GRU . 37

3.3.6 LSTM vs GRU . 37

3.4 Street Scene Data Sets . 38

3.4.1 Real World Data . 39

3.4.2 Synthetic Street Scene Data . 40

4 Frame-to-Frame Consistent Semantic Segmentation 43

4.1 Network Architectures . 44

4.1.1 SSNet . 44

4.1.2 ESPNet . 45

4.2 Video Data . 46

4.2.1 Semantic Segmentation Oracle . 46

4.2.2 Synthetic Data . 47

4.3 ConvLSTM . 48

4.3.1 VSSNet . 50

4.3.2 ESPNet L1 . 51

4.4 Time Convolution . 53

4.4.1 ESPNet T . 53

4.5 Consistency Constraint . 53

5 Experiments 57

5.1 Hardware and Software . 58

5.2 Semantic Segmentation with SSNet . 58

5.2.1 Training Setting . 58

5.2.2 Results . 59

5.3 SSNet with Temporal Information Flow . 60

5.3.1 Validation Metrics . 60

5.3.2 Training with LSTM . 61

5.4 Semantic Segmentation with ESPNet . 62

5.4.1 Sequence Training . 64

5.5 ESPNet with Temporal Information Flow 65

xi

5.5.1 ConvTime Layer . 65

5.5.2 ConvLSTM Layer . 65

5.5.3 Network Visualization . 68

5.6 Adding Synthetic Data . 73

6 Conclusion 77

6.1 Positives and Negatives . 78

6.2 Limitations . 79

7 Future Work 81

A List of Acronyms 83

Bibliography 85

List of Figures

1.1 Semantic Segmentation . 3

1.2 Inconsistent Semantic Segmentation . 4

2.1 Machine Learning Example . 9

2.2 Disciplines of Machine Learning . 11

2.3 Overfitting/Underfitting . 12

2.4 Example Neuron . 14

2.5 3 Layer Network . 16

2.6 Training a single neuron . 18

2.7 Convolution Operation . 21

2.8 Receptive Field . 26

3.1 Disciplines of Image Understanding . 30

3.2 LSTM Cell . 35

3.3 GRU Cell . 38

4.1 Architecuture of SSNet . 45

4.2 Architecuture of ESPNet . 45

4.3 DeepLab Oracle . 47

4.4 Carla Data . 48

4.5 ConvLSTM Layer . 49

4.6 Architecuture of VSSNet . 51

4.7 ESPNet with LSTM Layers . 52

5.1 Results of SSNet . 60

5.2 Consistency VSSNet . 63

5.3 Inconsistency Loss Functions . 69

xiii

xiv LIST OF FIGURES

5.4 Consistency ESPNet . 70

5.5 LSTM State Propagation . 72

5.6 Dilation on Motion . 74

List of Tables

2.1 Mathematical Notation . 8

3.1 Cityscapes Classes . 39

3.2 Mapping Carla to Cityscapes Classes . 40

5.1 VSSNet Results . 62

5.2 ESPNet Results . 64

5.3 ConvTime vs ConvLSTM . 66

5.4 ConvLSTM Results . 71

5.5 Carla Generation Settings . 73

5.6 Synthetic Data Results . 75

5.7 Path towards Consistency . 76

xv

1
Introduction

Contents

1.1 Image Analysis and Understanding 2

1.2 Video Data . 3

1.3 Algorithm on Street Scenes . 4

In the age of smartphones it has become easier than ever before to take pictures and

record videos. The ability to create memories visually is available all the time, because the

smartphone is usually nearby all the time. Both simplicity and availability causes people

to produce a large amount of image and video data. One problem of this large amount of

data is that it can only be interpreted by humans. Therefore, images have to be labeled,

sorted or put together in a photo album manually, which takes a lot of time. If computer

vision algorithms would be able to understand and interpret images, they could assist us

in handling the large amount of data.

Similar to smartphones, visual sensors are used for business applications as well to

produce high quality images and videos. Many branches (medicine, mobility, industry,

etc.) already benefit tremendously from the capabilities of imaging sensors in combination

with computer vision algorithms. Products and services can be created more efficiently to

enhance quality of life for humans.

The visual sense is the most important sense to humans. It generates about 70 %

of information the brain collects [65]. A human can have a short look at an image

and already knows which objects are present and what the scenario is about. The

quote “A picture is worth a thousand words” already suggests that there is a lot of

information in an image. Humans can even write stories several pages long after seeing

a picture just for a few seconds. However, getting a deeper understanding of an image

is very difficult for machines. Computer vision algorithms have problems identifying

objects in an image correctly. Getting human level performance at understanding

and describing the whole scenery is not possible at the moment, although there exists

1

Reference:

 ()

2 Chapter 1. Introduction

work which tries to achieve this [16]. The objective of this thesis is to improve algo-

rithmic performance of a specific field within image understanding, semantic segmentation.

Although machines are behind humans in the discipline of image understanding, they

are improving rapidly. There exist many applications which computer vision algorithms

are excellent for. For example, the company Facebook needs to check 3,500 images for

inappropriate content every second [80]. This is just one example of tasks which are

already delegated to computer algorithms.

Furthermore, monotonous assembly line work such as sorting out defective parts can

be done by robots with cameras. They can do simple tasks faster which allows humans

to focus on more challenging work. Another application is medical imaging, where vision

algorithms assist doctors by highlighting and detecting critical areas in patient images.

A very popular application is the development of visual algorithms for autonomous

vehicles. The reason for the popularity is that this technology can have an impact on

everyones daily life. On the one hand, this technology has the potential to save time.

Statistics indicate that the amount of time equal to 162 lifetimes is wasted every day by

commuting within the US only [36]. On the other hand, it could also improve safety. Road

traffic injuries are the eighth leading cause of death and first among people aged 5 to 29

[1]. In 2018, 1.35 million people died in road traffic. Since these accidents are mainly

caused by human error, machine driven vehicles have the possibility to save human lives.

Image analysis and understanding is definitely an important research field with many

interesting applications. Although many successful projects have already been developed,

there is still a long path towards reaching human level performance.

1.1 Image Analysis and Understanding

It is important to understand the high amount of image data available, otherwise lots of

data is uninterpretable and useless for machine processing. Image analysis and under-

standing algorithms extract information out of raw RGB image data. One of the most

important information to extract from an image is to identify which objects are present

and what it is about. These problems are faced at different granularity by the four main

disciples: i) image classification, ii) object recognition, iii) semantic segmentation and iv)

instance segmentation.

This thesis focuses on semantic segmentation, because it is a challenging problem which

computes semantic labels of a scenery. Semantic segmentation decides for each pixel in an

image to which semantic class it belongs to. An example is shown in Figure 1.1.

Semantic segmentation is very useful when the task is not only to detect the differ-

ent objects, but also to identify the exact boundaries. Important applications include

understanding of street scenes and medical image analysis.

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

1.2. Video Data 3

RGB Image Semantic Segmentation

Figure 1.1: Semantic Segmentation. Two examples of semantic segmentation. Each pixel of an
RGB image is assigned to a semantic class.

1.2 Video Data

As already pointed out, the large number of cameras and the instant possibility to take

photos results in a high amount of image data. However, modern cameras can not only

be used to create pictures, but can record videos in good quality as well. What in former

days was only possible with two different devices is now covered by a single device. Similar

to image sharing on Facebook [80], people share videos on YouTube and other platforms.

About five hours of video are uploaded on YouTube every second [2].

In most applications, the camera which is used to take images can produce video data

by capturing multiple consecutive images, referred to as frames, per second. The objective

of this thesis is to use this additional available frames from the past in order to create a

better understanding of the current image. We want to predict a semantic segmentation

and keep the prediction consistent over multiple frames in a video. This task is called

frame-to-frame consistent semantic segmentation.

The idea behind frame-to-frame consistent semantic segmentation is to use information

from previous frames to improve semantic segmentation of the current frame. Humans

know that objects do not change position over time when the light conditions differ as

long as they are not moved. However, algorithms which process each frame individually

are prone to those changes. Despite illumination changes, other variances that typically

occur when recording natural videos are occlusions, glaring problems, mirroring effects

and objects visible from different angles. An example algorithm which shows weaknesses

at giving a consistent prediction of the world is shown in Figure 1.2.

Reference:

 ()

Reference:

 ()

4 Chapter 1. Introduction

RGB Image (Inconsistent) Semantic Segmentation

Figure 1.2: Inconsistent Semantic Segmentation. The state-of-the-art algorithm [66] has problems
keeping a consistent view of the street scene. A few significant differences are highlighted by orange
boxes.

In this thesis we want to utilize the behavior and movement of semantic objects in

videos. The task of object tracking to get a consistent view of the world is complete in

the human brain automatically. In computer vision, the information of multiple frames

should assist the semantic segmentation prediction in order to give more consistent results

and therefore get the correct understanding of the world.

1.3 Algorithm on Street Scenes

One of the most fascinating places to apply computer vision algorithms is on street scene

data. Especially, videos from cities contain so much information that even human brains

are completely overwhelmed. It takes us some time to identify all objects in a complex

scene. Professional semantic segmentation annotators need about 90 minutes to label a

single street scene image [13]. When designing a self driving car, the understanding of

how street scenes need to be interpreted semantically is essential. The complexity of this

task can be seen at the number of accidents caused by human drivers, because sometimes

even the human brain makes misjudgments interpreting visual scenes.

However, machines have some advantages compared to humans. Computers can react

much faster. Humans have a reaction time of about 200 milliseconds whereas a standard

computer processor can perform one billion instructions in that same time interval. Nev-

ertheless, computer algorithms needs to be correct and efficient in order to capitalize on

the time advantage without the need of too much hardware resources.

The importance of true consistent information when considering street scenes is

shown in Figure 1.2. The recognition of e.g. street boundaries or the difference between

Reference:

 ()

Reference:

 ()

1.3. Algorithm on Street Scenes 5

pedestrian and biker has a large impact when designing a system with the task of

steering a car safely. The frame-to-frame consistent semantic segmentation algorithms

developed in this thesis are tested on street scene data because street scenes con-

tain a very high amount of information and therefore are challenging to interpret correctly.

To summarize, the objectives of this thesis is to better understand visual data by

means of semantic segmentation. Since in many applications (e.g. autonomous vehicles

[74]) video data is available, the information about the past will be used in order to predict

the present. Because street scene data is very complex to interpret and substantial in

the interesting field of autonomous driving, the developed algorithms are tested on this

domain.

Reference:

 ()

2
Machine Learning and Neural Networks

Contents

2.1 Mathematical Notation and Conventions 7

2.2 Machine Learning . 8

2.3 Neural Networks . 13

2.4 Convolutional Neural Networks 19

One of the methods to face scientific problems is through machine learning. It is

has been used for many years in data science and computer vision [3, 5, 40]. Recently

it became increasingly popular because the subfield of artificial neural networks achieved

excellent results in various computer vision tasks [30, 50, 82]. Some reasons artificial

neural networks beat many traditional image processing algorithms in certain benchmarks

are the high amount of data available nowadays and rapid development in the hardware

industry. Despite their success, artificial neural networks also have drawbacks compared

to traditional approaches, because once established for a certain domain, they are limited

to that domains and given scenarios.

The aim of this chapter is to explain the main principles of machine learning and neural

networks in order be able to understand the basic building blocks of this thesis. Because the

next Chapter 3, Semantic Segmentation and Video Processing already focuses on different

types and architectures of neural networks, the following pages provide an introduction to

the subject. Application and results of the methods explained are shown in Chapter 5.

2.1 Mathematical Notation and Conventions

In order to encourage mathematical understanding we introduce our notation. We use

italic fonts for scalar values, e.g. x or xi if we index an element i of vector x. Matrices

and vectors have bold font, e.g. M or v. The space definition of a vector is written in

7

Reference:

 ()

Reference:

 ()

8 Chapter 2. Machine Learning and Neural Networks

Entity Notation

Scalar x, xi,M
Vector space N RN

Vector in RN x = (x1, . . . , xN)T

Matrix space M ×N RM×N

Matrix of dimension RM×N M =

m1,1 . . . m1,N
...

. . .
...

mM,1 . . . mM,N

`p norm of vector ||w||p
Cardinality of set S |S|

Operation Notation

Hadamard product �
Convolution (in neural network) ∗

Specific Naming Notation

Set of target labels T
Set of target semantic labels S
Loss function L
Energy function E
Discrete probability distribution
on random variable X

p(X), q(X)

Learning rate η
Other hyper-parameters λ
Cell state vector C or c
Hidden state vector H or h
Training data set X
Training target set T
Parameter of a model Θ

Table 2.1: Mathematical Notation. In this table we summarize the notations used in this thesis.

double-lined upper case letters, e.g. R3 if the vector has three real valued entries. Table 2.1

shows a summary of our notation.

2.2 Machine Learning

The idea of machine learning is to use patterns, relationships and laws of data to optimize

parameters of a model. To optimize the parameters, a machine learning algorithm is fed

with example data from a certain domain where the source data distribution is unknown.

Although the algorithm only sees example data it needs to generalize towards the real

underlying distribution. This means that the machine learning algorithm needs to find a

2.2. Machine Learning 9

representation of the source domain which not only reflects the example data, but also

new examples drawn from the same concept. An example is shown in Figure 2.1. The

presented example shows a binary classification problem. It can be solved by a machine

learning algorithm which fits a linear decision boundary.

O
O

O

O

O

O

X

X

X

X X

Figure 2.1: Machine Learning Example. We illustrate an example of a binary classification model.
The decision boundary (orange) is trained to separate class “O” (red) from class “X” (blue).

In case of computer vision the task could be to classify whether a dog appears in an

image. If we consider Figure 2.1, data points “X” represent images with a dog and data

points “O” represent images without a dog. During the learning phase, many examples

of images with and without a dog are given as an input to the model. This causes the

algorithm to learn the concept behind a dog appearing inside an image. After the learning

phase, the algorithm should be able to classify dogs which where previously unseen. Since

this task is already complex a sophisticated machine learning method is required.

Other applications include financial market prediction [44], human language translation

[84] and voice/text recognition [53]. In the following section three groups of machine

learning methods are introduced.

2.2.1 Classification & Regression

Machine learning algorithms can be distinguished by what they are trying to predict.

Tasks like semantic segmentation are classification problems since the final outputs are

discrete labels. In this case a machine learning algorithm f maps any input x to a label

t̂ = f(x), where t̂ ∈ T = 0, . . . , N − 1 and N represents the number of classes. If we

consider the dog classification problem again, we would provide an input image x and the

algorithm would return t̂ = 1 if a dog is found and t̂ = 0 otherwise. The dog classification

example illustrates a binary classification problem which is a special case with N = 2

classes.

Reference:

 ()

Reference:

 ()

Reference:

 ()

10 Chapter 2. Machine Learning and Neural Networks

In contrast, regression models predict a continuous output vector t̂ ∈ RN .An example

would be to predict future sales growth of a company by providing micro and macro

economic indicators as input data. However, the focus will be on classification problems

in this thesis, because the task of semantic segmentation involves a classification problem

for each pixel in an image. For each pixel it has to be decided to which semantic class the

pixel belongs.

2.2.2 Discriminative Models & Generative Models

Machine learning models are grouped on their probability based assumptions. Classifica-

tion algorithms can be created using discriminate and generative models. Discriminative

approaches only consider mapping the training sample X(i) ∈ X to the target t(i) ∈ T
where i = 1, . . . ,M for M training samples. This mapping is learned by considering the

conditional probability p(t(i)|X(i)) which is the posterior probability in Bayes’ theorem

p(t(i)|X(i)) =
p(X(i)|t(i)) · p(t(i))

p(X(i))
. (2.1)

Consequently, discriminative models learn decision boundaries between the target classes

T.

In difference to that, generative models also learn how the training data X is distributed

by modeling the joint probability distribution p(X(i), t(i)), which are likelihood and class

prior in Bayes’ theorem. This allows generative models to create new data which is similar

to the observed data besides classification. Both types of models use the conditional

probability p(t|x) to classify an unobserved input x to a new label t ∈ T.

Two famous generative models are the more traditional Gaussian Mixture Model

(GMM) and the Generative Adversarial Network (GAN) which was introduced recently

by Goodfellow et al. [25]. Neural networks explained in Section 2.3 are discriminative

models. Neural network models classify the output solely based on the input, not consid-

ering how the input is distributed. Other discriminative models are Logistic Regression

and Support Vector Machine.

2.2.3 Supervised Learning & Unsupervised Learning

Machine learning algorithms can also be grouped by how they are trained. One possibility

to perform image segmentation is through unsupervised learning. The segmentation is

retrieved by only using the input data without any ground truth labels. Therefore, the

algorithm needs to learn structures in data only by inspection of the input. One example

of unsupervised learning is the clustering algorithm k-means [29] which can be used to

segment images into foreground and background. Segmentation with k-means has been

done by e.g. Dhanachandra et al. [15]. The advantage of unsupervised learning is that no

human effort is necessary in order to create the ground truth for training examples. This

Reference:

 ()

Reference:

 ()

Reference:

 ()

2.2. Machine Learning 11

is especially advantageous when considering a task like semantic segmentation where

each pixel has to be assigned a category.

In contrast, supervised learning needs labeled training data which can be very ex-

pensive e.g. in case of semantic segmentation. However, if enough training data exists,

supervised learning delivers good results within a specific domain, which can be seen in

e.g. the Cityscapes benchmarks [13]. Fortunately, ground-truth data for the domain of

street scene images is provided by the Cityscapes dataset and others [4, 24, 68]. This al-

lows working on complex supervised learning tasks without labeling effort. One approach

of summarizing the disciplines of machine learning introduced in the last three sections is

shown in Figure 2.2.

Machine Learning

Classification Regression Discriminative Models Generative Models

Supervised Learning Unsupervised Learning

Figure 2.2: Disciplines of Machine Learning. Differentiation of machine learning methods into
three groups. The parts which this thesis focuses on are highlighted in orange.

2.2.4 Training the Algorithm

Each learning algorithm f consists of parameters Θ which we want to learn from data. To

perform training, an objective function which measures the error between the prediction

t̂(i) = f(x(i); Θ) of the current model and the target t has to be introduced. Using a

quadratic loss for each training sample x(i) the loss function L for N training samples is

given by

L(Θ) :=
N∑
i=1

(f(x(i); Θ)− t(i))2. (2.2)

To train the algorithm we need to adjust the parameters to give better predictions. This

is achieved by minimizing the loss function

min
Θ
L(Θ) (2.3)

After training, the learned parameters of the model are evaluated on a separate test data

set. When evaluating the model on test data, one of two problems might be observable:

The model might be underfitted or overfitted. An underfitted model produces high

Reference:

 ()

Reference:

 ()

12 Chapter 2. Machine Learning and Neural Networks

training and test error. The most probable reason is a too simple model for a complex

problem. In contrast, low training and high test error are signs for overfitting. Possible

reasons for this phenomenon are too many parameters inside the model and/or not

enough training data. A graph which illustrates this problem is shown in Figure 2.3.

Complexity

E
rr

or

 Test Error
 Training Error

Underfitting Overfitting

Figure 2.3: Underfitting/Overfitting. Problems which occur during training of a machine learning
model are underfitting and overfitting. They are detected by comparing prediction errors of training
and test data set. Underfitting might be caused by choosing a too simple model, whereas overfitting
might be caused by a too complex model.

One possibility to avoid overfitting is to add a regularization term R(Θ) to the cost

function

min
Θ
L(Θ) :=

N∑
i=1

(f(x(i); Θ)− t(i))2 + λR(Θ), (2.4)

where the newly introduced hyper-parameter λ acts as a trade-off between and

data fidelity and regularization. The task of the regularization term is to penalize

complexity, e.g. by applying the `1-norm. In order to choose the hyper-parameter

λ, data has to be split into a third part the validation set. On this validation set,

several training runs are compared using different values for the hyper-parameter

λ. The best value for λ is then selected for the final evaluation on the test set.

This allows the model to be evaluated on the test set with all parameters fixed beforehand.

To summarize, the main goal of machine learning is to understand similarities and

relations within data and to store this information in a model. In order to learn, the

model must be trained using sample data set. Finally, the performance is evaluated using

2.3. Neural Networks 13

a test data set. Depending on the nature of the problem, different types of machine

learning algorithms are more or less suitable. We will now focus on a specific machine

learning model.

2.3 Neural Networks

Artificial neural networks (ANNs), referred to as neural networks (NNs) in this work, can

be used to perform classification and regression tasks. Since the general machine learning

principles mentioned in Section 2.2 apply, they are trained to give accurate predictions.

To optimize the parameters of an ANN, a loss function measures derivations between

prediction t̂ and target t.

As the name suggests, ANNs are inspired by the human brain. The human brain

consists of about 86 billion neurons [33] and over 100 trillion connections between neurons

called synapses [20]. Artificial neural networks are not able to achieve these complexity

so far because of computation constraints. Especially the large number of connections is

impossible to model within a machine. One type of artificial neural network which tries to

imitate the biological model are spiking neural networks introduced by Maas [64]. They

attempt to remain closely related to the processes in human brains.

Most types of ANNs used for computer vision, speech recognition, medical diagnosis,

etc. differ a lot from the biological model, while still using the most basic concepts. The

next sections will focus on artificial neural networks.

2.3.1 Components of a Neural Network

To map the input of a neural network to a deterministic output, the data flows through

neurons. The architecture of such a network decides how the neurons are located and

connected. It can be represented using a directed graph, where the nodes correspond to

neurons and directed edges model the connections. The smallest possible architecture

would only contain a single neuron.

The most common example of how such a neuron works is given in Figure 2.4. Inputs

x are multiplied with a weight vector w and a bias b is added. Weights and bias are called

the parameters of the neuron. The result is passed through an activation function φ which

then returns the output y of the neuron:

y = φ(xTw + b). (2.5)

2.3.1.1 Activation Function

To produce a meaningful output the choice to the activation function is important. It can

decide whether a neuron is active or not. To achieve this, the most simple method is to

Reference:

 ()

Reference:

 ()

Reference:

 ()

14 Chapter 2. Machine Learning and Neural Networks

ϕ(x)

x1

xn

w1

wn
Σ x y

.
.

.
.

b

Figure 2.4: Example Neuron. The input vector is multiplied with the weight vector: xTw. After
the bias b is added, the result x is passed through an activation function φ(·) to produce output y
of the neuron.

use a step function which is activated if a certain threshold τ is reached. A network which

only consists of such a single neuron is able to perform binary classification. It is termed

single-layer perceptron. The activation function is given by

φ(x) =

{
0 for x < τ

1 for x ≥ τ
. (2.6)

The problem of the step function is that its gradient is zero almost everywhere. Thus,

training with gradient methods is not possible. To overcome this issue, the sigmoid func-

tion provides a continuous approximation of the step function. It is continuous differen-

tiable and the outputs remain between zero and one:

φ(x) = σ(x) =
1

1 + e−x
. (2.7)

The tanh activation function is similar to the sigmoid function, however it creates

outputs within the range from -1 to +1. This function allows data to remain zero-centered:

φ(x) = tanh(x) =
ex − e−x

ex + e−x
. (2.8)

A very popular linear activation function is the Rectified linear unit (ReLU) [67]. It

avoids the vanishing gradient problem of sigmoid and tanh in the positive domain by

using a linear function. In the negative domain sparsity is ensured through deactivation

of neurons. The ReLU is defined as

φ(x) =

{
0 for x < 0

x for x ≥ 0
. (2.9)

Reference:

 ()

2.3. Neural Networks 15

One variation of the ReLU is the Leaky rectified linear unit (LReLU) [63]. It introduces

a small slope c in the negative domain:

φ(x) =

{
cx for x < 0

x for x ≥ 0
, (2.10)

where c = 0.01 is a common choice.

The Parametric rectified linear unit (PReLU) [31] is similar to the LReLU, except that

the parameter α defining the slope, is learned during training:

φ(x, α) =

{
αx for x < 0

x for x ≥ 0
. (2.11)

The last important activation is the softmax function. It can be used at the output

layer of a network to return probability values which are between zero and one. They also

sum up to one, because softmax normalizes over all neurons at a layer:

φi(x) =
exi∑J
j=1 e

xj
for i = 1, . . . , J, (2.12)

where J is the number of neurons at that layer.

In conclusion, ReLU functions work well when considering complex problems with

many consecutive neurons. The advantage over sigmoid and tanh is that gradients do

not vanish during training [39]. However there are also applications for other activation

functions. Sigmoid functions are used in recurrent neural networks explained in Chapter 3

where they act as one/off gates. The softmax activation function is often used at the last

layer of a network to output probability values. The next section focuses on how multiple

neurons are stacked together to create a network.

2.3.1.2 Layers of Neurons

Problems like image segmentation which are tackled by neural networks are complex in

a sense that a single neuron cannot decide between multiple classes successfully. There-

fore, multiple neurons are combined in a directed graph to allow more complex decision

boundaries. Nodes at the same layer of the graph are grouped into a layer of the network.

All root nodes establish the first layer (input layer). This is where input data is handed

over to the network. The input to a network can either be raw data or preprocessed data

termed features. On the other side of the network, leaf nodes represent the final output

layer. The results of the output layer can either be used directly for predictions or they

can also be processed further. Layers in between are called hidden layers.

One example of a fully connected network with three layers is shown in Figure 2.5. In

Reference:

 ()

Reference:

 ()

Reference:

 ()

16 Chapter 2. Machine Learning and Neural Networks

most neural network architecture all directed edges point in the same direction namely

from the input to the output. Consequently, no cycles are present. However, recurrent

neural networks also contain neurons which have connections to themselves. They are

discussed in detail in Chapter 3. If each neuron within a layer is connected to every other

neuron of the previous layer, the layer is called fully connected. Similarly, if each neurons

within the whole network is connected to every other neuron in the previous layer, the

network is called fully connected.

Input Hidden Output

Figure 2.5: 3 Layer Network. This is an example network architecture consisting of three fully
connected layers. Firstly, the left input layer (layer one) contains 2 neurons which process the
input of the network. Secondly, the output of the activation function of layer one is forwarded to
the three neurons in the hidden layer. Finally, the two output neurons of layer three generate the
output of the network.

The design of network architectures highly depends on the application domain. In

computer vision mostly convolutional neural networks (CNNs) (see Section 2.4) are used.

Their architecture is characterized by sparse connections and a high number of neurons

and layers. Training neural networks with many layers is also referred to as Deep learning.

2.3.2 Training a Neural Network

The most important part is the actual learning, where all weights and biases of the

network are trained. This is achieved by assigning a loss which measures the difference

between output and target. Since this loss function is not convex a good assignment of all

parameters has to be found using non-convex optimization algorithms. Gradient-based

methods back-propagate the loss in direction to the input which creates an update for

every weight and bias in the network. One efficient optimization algorithm for this

non-convex problem is stochastic gradient descent (SGD) which is applied to batches of

2.3. Neural Networks 17

the training data set iteratively.

To optimize the high dimensional problem, a large training data set is essential to

successfully perform learning. Training with a too small data set will most likely result in

learning data by hard, instead of learning patterns and relationships of the distribution

from which the data is drawn from.

Choosing the loss function L depends on whether to face a regression or classification

problem. When considering classification problems e.g. semantic segmentation, the cross-

entropy function is often used. It treats input and target as distributions and penalizes

differences exponentially. It is defined as

L(p, q) = −
C∑
c=1

q(tc) log(p(tc)), (2.13)

where p is the distribution of the prediction, q is the distribution of the target and C is

the number of classes.

The learning with SGD involves the chain rule for differentiation applied at each layer

of the network. Let us consider a small binary classification example depicted in Figure 2.6.

In this architecture we only use a single neuron. The loss is given by

L(x, t0) = t0 log(σ(x1w1 + x2w2 + b)) + (1− t0)(1− log(σ(x1w1 + x2w2 + b))), (2.14)

where (x1, x2) is a single 2D training example. The corresponding groundtruth label t0 = 1

if the class is 0 and t0 = 0 if the class is 1.

The loss of a weight wi is given by the gradient

∂L
∂wi

=
∂L
∂σ

∂σ

∂wi
(2.15)

= t0(
1

σ(x1w1 + x2w2 + b)
)
∂σ(x1w1 + x2w2 + b)

∂wi
(2.16)

− (1− t0)(
1

σ(x1w1 + x2w2 + b)
)
∂σ(x1w1 + x2w2 + b)

∂wi
(2.17)

= t0(1− σ(x1w1 + x2w2 + b))xi − (1− t0)(1− σ(x1w1 + x2w2 + b))xi (2.18)

= (2t0 − 1)(1− σ(x1w1 + x2w2 + b))xi. (2.19)

Similarly, gradients for deeper networks can be computed using the chain rule.

During the training of neural networks with gradient descent, parameters are not

updated with the full magnitude, but only with a small fraction. The reason is that

problems might occur in non-convex optimization i.e., nummerical problems, oscillation

18 Chapter 2. Machine Learning and Neural Networks

σ(·)

x1

x2

w1

w2
t0

b

t0

^
L(t0,t0)^

Figure 2.6: Training a single neuron. The loss function L is applied to the prediction t̂0 of a
single neuron using the ground-truth label t0.

and saturation at saddle points. To avoid these problems, a learning rate η ∈ (0, 1)

is introduced as a hyper parameter. The neural network optimizer Adam developed

by Kingma et al. [45] uses additional hyper parameters to support fast training. The

optimizer calculates an exponential moving average of the gradient and the quadratic

gradient over the last iterations. This momentum is applied as a weight update.

Adam allows for faster training than Adagrad [21] or SGD with momentum of many

convolutional neural networks [45]. Therefore, Adam is used as optimizer in Chapter 5.

To summarize, the smallest unit in a neural network is a neuron. It takes an input

vector and outputs a scalar value. Within a neuron, the input vector is multiplied element

wise with a weight vector, which is a linear operation. Then, the sum of this multiplication

together with a bias are passed to an activation function, which represent the non-linear

part, to produce the output of the neuron.

Multiple neurons are stacked together in a neural network to learn complex patterns.

These networks are structured in layers where a layer is composed of neurons with the

same distance to the input.

The actual learning occurs when training the network using example data. An objective

function needs to evaluate the deviation of the network prediction from the desired output.

The loss measured between prediction and target is back-propagated to every parameter of

the network in order to improve prediction accuracy iteratively. The next section focuses

on a special linear operation which is used to tackle tasks in computer vision.

Reference:

 ()

Reference:

 ()

Reference:

 ()

2.4. Convolutional Neural Networks 19

2.4 Convolutional Neural Networks

To give an overview, Convolutional neural networks (CNNs) are an architecture of neural

network which apply the convolution operation on some layers. When used for com-

plex applications, they are characterized by many layers but few connections. The main

applications include imaging problems such as e.g. image classification [50], semantic seg-

mentation [56] and human pose estimation [83]. Their network structure is hierarchical,

because the graph representing the CNN is directed from the input to the output layer.

Lower layers which are close to the input of the network, retrieve information about colors

and gradients in an image. Higher layers operate close to the output and learn complex

structures like shapes of objects.

CNNs became popular in 2012 when they first beat traditional approaches on the

ImageNet classification challenge introduced by Russakovsky et al. [75]. The winning

CNN was AlexNet by Krizhevsky et al. [50] with eight layers and over 600,000 neurons.

Although CNNs where already used in 1998 by LeCun et al. [53] for handwritten character

recognition, they were not able perform image classification at that time. The advances

in computational power and availability of larger data sets enabled them to deliver good

results in recent years.

The following sections focus on how different types convolution are applied to images

and how different channels can be used to transfer information from lower layers to the

output of the network. Furthermore, the receptive field of a neuron at a given layer will

be discussed. These operations are the basis of the experiments conducted in Chapter 5.

2.4.1 The Convolution Operation

The basic operation of a CNN is the discrete convolution operation. Let us consider a

grayscale image X ∈ RM×N which we convolve with a filter W ∈ RP×Q. Then, the

pre-activated output A ∈ RU×V has the dimension U × V, where

U = M − P + 1 and (2.20)

V = N −Q+ 1. (2.21)

The 2D convolution is given by

au,v = (X ∗W)u,v =

P∑
p=1

Q∑
q=1

xu+p−1,v+q−1wp,q, (2.22)

where u = 1, . . . , U and v = 1, . . . , V .

Similarly to the fully connected layer, the convolution can also be calculated using

the matrix-vector product W′x′ = a′. Therefore we must reshape and reorder as follows:

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

20 Chapter 2. Machine Learning and Neural Networks

x′ ∈ RMN , W′ ∈ RUV×MN and a′ ∈ RUV . The matrix multiplication is now given by

wT
1 ,

N−Q︷ ︸︸ ︷
0 · · · 0 wT

2 ,

N−Q︷ ︸︸ ︷
0 · · · 0 · · · wT

P ,

N−Q︷ ︸︸ ︷
0 · · · 0 0 · · ·

(M−P)N︷︸︸︷
· · · 0

0,wT
1 , 0 · · · 0 0,wT

2 , 0 · · · 0 · · · 0,wT
P , 0 · · · 0 0 · · · · · · 0

...

0 · · · 0,wT
1 0 · · · 0,wT

2 · · · 0 · · · 0,wT
P 0 · · · · · · 0

N︷ ︸︸ ︷
0 · · · 0 wT

1 , 0 · · · 0 wT
2 , 0 · · · 0 · · · wT

P , 0 · · · 0
(M−P)N−N︷︸︸︷
· · · 0

...

0 · · · 0 0 · · · 0,wT
1 0 · · · 0,wT

2 · · · 0 · · · 0,wT
P , · · · 0

...

...

(M−P)N︷︸︸︷
0 · · · · · · 0 wT

1 , 0 · · · 0 wT
2 , 0 · · · 0 · · · wT

P , 0 · · · 0

...

0 · · · · · · 0 0 · · · 0,wT
1 0 · · · 0,wT

2 · · · 0 · · · 0,wT
P

x1

x2

...

xM

=

a1

a2

...

aV

aV +1

...

a2V

...

...

a((U−1)

V)+1

...

aUV

,

where xm is row m of image X and wp is row p of filter W both represented as

column vectors. The sparse matrix W′ indicates that the model has few connections.

Furthermore, the weights are shared across neurons. Both aspects allow an efficient

implementation of the convolution operation.

Since RGB images provide much more information than grayscale images, we can also

extent definition of the convolution to multiple-channel inputs C. This is achieved by the

neuron having separate weights for each channel and summation over all channels:

au,v = (X ∗W)u,v =
C∑
c=1

P∑
p=1

Q∑
q=1

xu+p−1,v+q−1,cwp,q,c, (2.23)

where X ∈ RM,N,C and W ∈ RP,Q,C . Changes compared to the definition Equation (2.22)

are highlighted in green. An example of a 5× 5× 3 convolution with a 64× 64× 3 input

2.4. Convolutional Neural Networks 21

is shown in Figure 2.7.

Image Activation
Map

64

64

3

5

5

3 60

60

1

Figure 2.7: Convolution Operation. A 64×64×3 dimensional input image (orange) is convolved
with a 5×5×3 filter (light green). The filter is moved to every possible location within the image.
Results of the convolution at each position are stored in a 60× 60× 1 dimensional output, which
is called “activation map” (dark green). The receptive field of every neuron is 5 × 5, this means
that each entry in the activation map is affected by 5× 5 pixels in the input image.

2.4.2 The Convolutional Layer

The activation map computed by the convolution operation, is processed further within a

convolutional layer. After the convolution is computed for every neuron, a bias b is added

to influence the firing behavior of the neuron. Then, the activation function φ(·) appends

the non-linearity to allow learning of complex data dependencies through multiple layers

of neurons. The output y of neuron (u, v) is given by

yu,v = φ(au,v + b). (2.24)

As we have already seen in Equation (2.22) a single neuron in a CNN is only connected

to P ×Q pixels in the input channel. This causes the neuron to search for local patterns

in the image. Sharing weights across the spatial dimensions M,N enforces searching the

same pattern in the whole input channel.

However, it is essential to search for more patterns in the image to successfully face

22 Chapter 2. Machine Learning and Neural Networks

complex computer vision problems. This can be achieved through creating multiple output

channels. Each output channel d ∈ {1, . . . , D} is capable of extracting a different feature

because it has its own weights and bias. The pre-activation is given by

au,v,d = (X ∗W)u,v,d =
C∑
c=1

P∑
p=1

Q∑
q=1

xu+p−1,v+q−1,cwp,q,c,d (2.25)

and the output of the layer is

yu,v,d = φ(au,v,d + bd). (2.26)

Changes compared to the previous convolution operation are highlighted in green.

The previously introduced concept of output channels adds complexity to the convo-

lutional layer. We want to compute the degree of complexity within a layer. We measure

the degree of complexity in terms of learn-able parameters and floating point operations

which have to be computed.

Firstly, to get the number of parameters we need to consider weights and biases. A

2D convolution layer consists of C ·D · P ·Q weights and D biases, consequently,

Lparams = C ·D · P ·Q+D (2.27)

parameters in total. An important aspect to consider is that the number of parameters

does not depend on the spatial dimensions of the input image. This shows that a con-

volutional layer can be applied to images with different resolutions without changing the

architecture.

Secondly, the computation complexity is measured in multiply-add (MADD) opera-

tions. 1 MADD consists of a multiplication between two scalars followed by an addition

which are two floating point operations. Consequently, a n × n vector product needs n

MADDs. The exact number of n − 1 additions does not affect the metric. The total

number of MADDs for the linear part of one layer is

LMADDs = C ·D · P ·Q · (M − P + 1) · (N −Q+ 1). (2.28)

One aspect that has to be considered, especially when computing the semantic segmen-

tation of an image, is that predictions are made for every pixel. Such a dense prediction

task becomes very difficult, because a convolution operation reduces the input resolution

M ×N to (M − P + 1) × (N − Q + 1). To overcome this issue, a padding of size P − 1

and Q − 1 is appended to the spatial dimensions (width and height of an image). This

padding can be created by e.g. reflecting the values at the image border, copying the

2.4. Convolutional Neural Networks 23

boarder values or adding zeros.

This concludes the main computation capabilities of a single layer within a convolution

neural network. Nevertheless, there are variations of convolution operations which will be

discussed in the next section.

2.4.3 Different Types of Convolutions

In the previous section a standard 2D convolution was explained. However, there are also

other types of convolutions which might be useful depending on the desired output of a

layer and the problem. Different convolution operations can change the spatial dimensions.

On the one hand a convolution with a stride larger than one and pooling reduce spatial

output dimensions, on the other hand transposed convolutions are used to upscale images.

Depthwise separable convolutions decrease to computation time and 3D convolutions apply

the 2D concept to the third dimension. Dilated convolutions are used to increase the

receptive field. The most important operations used in this work are stated in this section.

We highlight the changes compared to the standard convolutions defined in Section 2.4.1

in green.

Strided Convolution A stride of size S defines the step-size of the filter moving over

an image. It is introduced to reduce spatial dimensions:

au,v =
P∑
p=1

Q∑
q=1

xS(u−1)+p,S(v−1)+qwp,q, (2.29)

where the output resolution reduces to U = bM−PS c+ 1 times V = bN−QS c+ 1.

Pooling Layer Another technique to reduce spatial dimensions are pooling layers. Pool-

ing layers are often inserted between convolution layers. A max-pooling layer uses the

max(·) function to find the highest activation of the previous convolution layer in a pre-

defined region:

yu,v = max
p=0...P−1, q=0...Q−1

xu+p,v+q, (2.30)

where the size of the predefined region is P × Q. Note that no bias and no activation

function is applied. Furthermore, no parameters are needed. A stride can also be added

to the pooling operation.

Transposed Convolution Pooling layers and strided convolutions results in lower spa-

tial dimensions. However, to semantically segment an image, we need pixel-wise predic-

tions. If strided convolutions or pooling layers are used, up-sampling is needed to recover

the original spatial image dimensions. This can be achieved through learning the param-

eters of a transposed convolution. In Section 2.4.1 we saw that the convolution can be

24 Chapter 2. Machine Learning and Neural Networks

expressed using the matrix-vector product W′x′ = a′. As the name suggest, the trans-

posed convolution is applied by transposing the weight matrix: W′Tx′ = a′. Consequently,

the output a′ has increased in dimension with respect to the input: U = M +P − 1 times

V = N +Q− 1.

Depthwise Separable Convolution Another important concept are depthwise con-

volutions [35]. Their filters operate on each channel individually and therefore save com-

putation time. The number of parameters decreases to C · P ·Q+D, where C and D are

the number of input resp. output channels. However, the constraint C = D has to be

fulfilled. The depthwise convolution is defined as

au,v,c = (X ∗W)u,v,c =

P∑
p=1

Q∑
q=1

xu+p−1,v+q−1,cwp,q,c. (2.31)

A depthwise separable convolution [11] consist of a depthwise convolution followed by

a pointwise convolution. In the first part, the depthwise convolution creates C output

channels. In the second part a convolution with filter size 1× 1 combines the C channels

into a single one. The depthwise separable convolution is defined as

au,v = (X ∗W(1) ∗W(2))u,v =
C∑
c=1

 P∑
p=1

Q∑
q=1

xu+p−1,v+q−1,cw
(1)

p,q,c

w(2)
1,1,c, (2.32)

where W(1) is the depthwise filter and W(2) is the pointwise filter. The number of multiply-

add computations drops to

C · P ·Q · (M − P + 1) · (N −Q+ 1) + C ·D · (M − P + 1) · (N −Q+ 1) (2.33)

compared to the standard convolution shown in Equation (2.28). Similarly, the number

of parameters is reduced to

C · P ·Q+ C + C ·D +D. (2.34)

3D Convolution All previously introduced convolution variants operate on

two-dimensional inputs. In applications e.g. video processing an additional temporal

dimension has to be considered. A 3D convolution processes input X ∈ RM×N×O with

filter W ∈ RP×Q×R to produce output A ∈ RU×V×T :

au,v,t = (X ∗W)u,v,t =

P∑
p=1

Q∑
q=1

R∑
r=1

xu+p−1, v+q−1, t+r−1 wp,q,r. (2.35)

Reference:

 ()

Reference:

 ()

2.4. Convolutional Neural Networks 25

This concept also generalizes for higher dimensional convolutions. However, it should be

noted that 3D Convolutions are computational expensive.

Dilated Convolution Dilated convolutions [86] are popular at dense prediction tasks,

because they enlarge the receptive field (Section 2.4.4). When used together with padding

they also keep the spatial dimensions constant. The operation is defined as

au,v = (X ∗W)u,v =
P∑
p=1

Q∑
q=1

xu+ρ(p−1), v+ρ(q−1)wp,q, (2.36)

where ρ is the rate of dilation. Dilated convolutions are important for semantic segmen-

tation because they enlarge the receptive field while reducing the number of parameters.

2.4.4 Multiple Convolutional Layers in a CNN

After having introduced the most relevant types of convolutions for this thesis, we want

to mention how they operate within a CNN. Since the network is structured in layers,

each layer can perform a different convolution operation. When stacking layers together,

the number of channels at the input of each layer has to fit the number of channels at

the output of the previous layer. One desirable feature of CNNs is that if every layer

performs a convolution, then changing the spatial dimensions of the input does not affect

the network architecture. This is very useful, because images of different resolution can

be in a single data set. A network architecture which only consists of convolutional layers

is called fully convolutional.

Receptive Field An important metric when deciding how many layers an architecture

should at least have to tackle a certain problem is the size of the receptive field. The

receptive field is the region of pixels in the input image which affect the output of a neuron

at a given layer. An example is shown in Figure 2.8. After the first layer performing a

P (1) ×Q(1) convolution the size of the receptive field is P (1) ×Q(1), because each neuron

sees that many input pixels. If the second layer performs a P (2) × Q(2) convolution the

size of the receptive field grows to (P (1) + (P (2) − 1))× (Q(1) + (Q(2) − 1)). The recursive

formula to calculate the size of the receptive field at layer i is given by

z1 = (P (1), Q(1))T , (2.37)

zi = zi−1 + (P (i) − 1, Q(i) − 1)T · S(i−1), ∀i > 1, (2.38)

where P (i) and Q(i) represent the filter size with stride S(i) of the convolution at layer i.

For example, when designing an image classification architecture, the receptive field of the

output layer should be at least the size of the input image to be able to make a prediction

considering the input image as a whole.

Reference:

 ()

26 Chapter 2. Machine Learning and Neural Networks

Layer 1 Layer 2 Layer 3

Figure 2.8: Receptive Field. This example shows a three layer architecture with convolution
operations of filter size 3× 3 at each layer. One pixel at layer 3 (yellow pixel) has a receptive field
of size 7× 7 on the input at layer 1 (yellow and green pixels).

Batch Normalization Depending on how many layers and which activation functions

are used, the input for higher layers might be in an undesired range. This can cause

gradient saturation during training and slow convergence. To overcome this issue batch

normalization introduced by Ioffe et al. [37] is applied between layers. Batch normalization

transforms the input batch of a layer to have the desired mean and variance:

yi =
xi − µ
σ

, (2.39)

where µ is the mean, σ2 is the variance and i = 1, . . . , I is the size of the batch. Batch

normalization can be seen as another layer of a network although it does not compute a

convolution.

To summarize, this chapter focuses on how machine learning and neural networks

are used to face computer vision problems. All machine learning algorithms try to find

patterns and relationships in data. When semantically segmenting images, the algorithm

needs to learn that e.g. dogs inside an image can be detected by a certain pattern. The

idea of machine learning is to show training data to the algorithm in order to learn the

patterns. Unfortunately, the amount of training data needed to learn complex structures is

very large. During training the parameters of the algorithm are tuned. The performance

is evaluated on a separate test dataset which was not previously shown to the model.

Hyper-parameters are selected using a third validation dataset.

Reference:

 ()

2.4. Convolutional Neural Networks 27

Artificial neural networks are discriminative models which provide a framework for

machine learning algorithms. They are well suited for semantic segmentation because

of their ability to tackle classification problems. The smallest unit, an artificial neuron,

consists of weights, bias and an activation function. Weights transform the input data

linearly, while the activation function transform non-linearly. Neurons are organized in

layers which connect to each other. The use of multiple neurons and layers allow the

network to learn complex decision boundaries between semantically different classes such

as e.g. dogs vs cats.

Before training, all parameters of the network are initialized. Training requires evalu-

ation of performance through target outputs and an objective function. The gap between

the current output of the network and the target output is reduced through changing the

parameters. This non-convex optimization problem is faced with e.g. the gradient descent

algorithm, which involves back-propagating first order derivatives.

A method to efficiently apply the artificial neural networks to computer vision problems

is through CNNs. They are characterized by many layers of neurons and few connections

between them. Layers close to the input image extract low-level features e.g. color and

gradient while layers close to the output search for complex structures such as e.g. shapes

of objects.

In the next Chapter 3, CNN architectures of recent work will be analyzed in detail,

while focusing on the task of consistent semantic segmentation over multiple input frames.

3
Semantic Segmentation and Video Processing

Contents

3.1 Semantic Image Segmentation . 30

3.2 Video Processing . 32

3.3 Video Semantic Segmentation with Recurrent Neural Networks 34

3.4 Street Scene Data Sets . 38

In this chapter we want to examine how frame-to-frame consistent semantic segmen-

tation can be achieved, by studying related work in this field. First, we focus on different

approaches for semantic image segmentation. Second, we discuss the problems which arise

when processing videos. Then, we need to look at combined methods to accomplish the

task of consistent video prediction. When examining combined methods, special focus is

given to recurrent neural networks. Finally, suitable street scene data sets are compared.

The main tasks of image understanding include image classification, object recogni-

tion, semantic segmentation and instance segmentation. They are compared in Figure 3.1.

These tasks operate at different level of detail. Image classification algorithms assign an

image as a whole to a category e.g. apple, bus, clown. The task of object recognition,

searches for all objects inside an image and classifies all of them into a category e.g. an

image with two sheep and a person will be recognized as three objects. Semantic seg-

mentation algorithms assign each pixel in an image to a class as shown in Figure 1.1.

Compared to the two previously mentioned problems, this task is more complex because

object boundaries must be computed on pixel-level accuracy. In addition, instance seg-

mentation distinguishes multiple objects if they correspond to the same class, which is the

most detailed task. In this thesis we are especially interested in the semantic segmentation

of images, although all of the problems are closely related.

29

30 Chapter 3. Semantic Segmentation and Video Processing

(a) Image Classification (b) Object Detection

(c) Semantic Segmentation (d) Instance Segmentation

Figure 3.1: Disciplines of Image Understanding. The main disciplines of image understanding
compared on the same RGB image: Image Classification (a), Object Recognition (b), Semantic
Segmentation (c) and Instance Segmentation (d). The images are taken from [87]

3.1 Semantic Image Segmentation

As the name suggests, semantic segmentation combines two tasks. One of them is to

segment an image into different parts, the other gives a semantic meaning to each part.

In this section, we first focus on each task individually, before discussing combined work

in semantic segmentation.

3.1.1 Segmentation

A very intuitive solution to the image segmentation problems is by using methods of graph

partitioning. Pixels are represented by nodes and edges are drawn across neighboring

pixels. The edges have weights assigned where values correspond to the intensity changes

between pixels. One possibility is to maximize the normalized cut criterion [77], which

measures the dissimilarity between different partitions in a graph. Other possibilities

include the use of clustering algorithms e.g. k-means, partial differential equations and

edge detection.

3.1.2 Semantics

The second task gives a semantic meaning to each of the image segments. This classifica-

tion problem can be evaluated using different metrics. The prediction accuracy computes

Reference:

 ()

Reference:

 ()

3.1. Semantic Image Segmentation 31

the ratio between correctly segmented pixels and total amount of image pixels:

Acc =
1

MN

M∑
m=1

N∑
n=1

δ(p′m,n, sm,n), (3.1)

where P′ ∈ NM×N is the prediction, S ∈ NM×N is the ground-truth and δ represents the

Kronecker delta.

A more sophisticated metric is the mean Intersection over Union (mIoU). For each

class, the Intersection over Union is given by:

IoU =
TP

TP + FP + FN
, (3.2)

where TP refers to true positive, FP to false positive and FN to false negative classified

pixels of a specific class. The mIoU is given by computing the average over all classes.

This metric ensures that each class is weighted equally, regardless of the total number of

pixels for the class. Mean IoU is a good metric for street scenes, because it treats smaller

semantic classes e.g. street signs, traffic lights, poles, bikers which are very important

understanding traffic situations equal to larger classes e.g. sky, street, vegetation.

When combining the tasks, semantic segmentation can be computed through Con-

ditional Random Fields (CRFs). A method which considers a fully connected CRF is

introduced by Krähenbühl and Koltun [49].

3.1.3 Semantic Segmentation with CNNs

As already introduced in Chapter 2, semantic segmentation can be computed with CNNs.

They outperform traditional methods on current benchmarks [13, 24]. However, they can

easily be manipulated as shown in [81]. An easy to implement attack is e.g. introduced

by Goodfellow et al. [26].

Another discipline which is to design architectures for CNNs. This problem can be seen

as an art, because there are no mathematical principles which proof that one architecture

is superior for a specific application. One approach to find a good architecture is by

random testing as shown in [48]. To some extend the architecture can also be explained

by the size of the receptive field as suggested in Section 2.4.4.

Most architectures are designed for the image classification problem, which means

they are not capable of performing dense prediction. The compact high level feature

representation can be used for dense prediction with a decoder module. The original

spatial dimensions can be up-sampled by transposed convolutions and pooling layers [56].

Another possibility to keep spatial dimensions through several layers is by using

padding and dilated convolutions Equation (2.36). This method is important for

semantic segmentation because it enlarges the receptive field while reducing the number

of parameters. Example architectures which use this technique are DeepLab [11] and

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

32 Chapter 3. Semantic Segmentation and Video Processing

ESPNet [66]. While the DeepLab architecture has a large number of parameters and over

70 layers, the ESPNet is more efficient.

3.2 Video Processing

When considering multiple frames in a video, different computer vision problems need to be

tackled to understand the time dependencies and the movement of pixels corresponding to

semantic regions. The advantage of having multiple frames in a short time period (e.g. 30

FPS), is that objects only move slightly and correspondences between consecutive images

are found easier.

Three important motion analysis disciplines include egomotion, tracking and optical

flow. The task of egomotion deals with the estimation of the camera movement from one

frame to another. To give one example, egomotion tries to estimate the positions of a

moving automobile by considering a video sequence recorded with a camera mounted on

the vehicle. Egomotion consists of rotation and translation of the camera between two

images. In a 3D scenario this problem can be faced by eight point correspondences. These

point correspondences can be found by traditional feature extractors (e.g. Harris corners

[28], FAST [73]) in combination with descriptors (e.g. SIFT [57], BRIEF [6]) and a robust

matcher.

The task of video tracking aims for following moving objects through multiple frames.

In contrast to egomotion, it consists of two parts. First, the target object needs to be

identified and described properly. Then, the descriptors need to me matched through

consecutive frames in order to track an object (with e.g. a Kalman filter [42]).

The most difficult task is to compute the optical flow between two images. It describes

the motion of every pixel from one image to another image, with a motion vector. This

problem becomes very hard for images with many homogeneous regions. For instance, it

is impossible to detect motion between two consecutive images in which all pixels have

the same color. Objects need to have some texture for the flow algorithm to find corre-

spondences and compute motion. Furthermore, pixels which are hidden behind an object

in one image (occluded pixels), but then visible in another image, cannot be estimated

because of missing correspondence.

3.2.1 Optical Flow

The task of optical flow tackles the problem of how pixels move from one frame to another.

Under the assumption that brightness remains constant,

I(p, t) = I(p + ∆p, t+ ∆t), (3.3)

where the function I(p, t) return the intensity value of pixel p at time t. The problem of

finding the motion vector for each pixel can be tackled with various optimization methods

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

3.2. Video Processing 33

(e.g. Lucas-Kanade [60], total variation methods introduced by Camille Jordan).

The advantage of having optical flow information can be beneficial, because semantic

segmentation should be equal for consecutive frames, after reversing the motion transfor-

mation for each pixel.

3.2.2 Frame-to-Frame Consistency

A frame-to-frame consistent solution is important for every task of image understand-

ing. One approach towards consistent semantic segmentation is with statistical models.

Markov Random Fields [54] are used for image segmentation by modeling the joint proba-

bilities between image features and semantic classes. They can also be extended to predict

consistent semantic segmentation [8, 14, 61] by introducing temporal links [7].

Similarly, Conditional Random Field (CRF) [52] compute semantic segmentation by

modeling the conditional probability between features and labels. The differences between

discriminative and generative models are presented in Section 2.2.2. A 3D CRF can enforce

consistency in a video setting. Kundu et al. [51] establish consistency with a 3D CRF as

a post-processing step.

Another possibility to achieve consistency is with graph-based methods. In the 2D

case, the nodes of the graphs are the pixels and the edges connect neighboring pixels in

the image. When adding video data, the graph becomes three dimensional and voxels

have edges into the temporal dimension. Similar pixels are grouped into superpixels [23]

to reduce complexity of the graph and save computation time. Different graph parti-

tioning algorithms (e.g. [77]) can be used to compute consistent video segmentation. A

learned approach to find a good structure of the graph is introduced by Khoreva et al.

[43]. Strategies to minimize energy in such a graph include hierarchical abstraction [38].

Optimization is computed on a course-to-fine level to compute dense video segmentation.

Consistency between multiple frames can also be enforced with neural networks. Con-

sistent object detection is achieved in by combining the tasks of object detection and

object tracking through time [19]. In recent work the two task are tackled with recurrent

neural networks [22, 58] explained in Section 3.3. Consistent semantic segmentation takes

more effort to compute than object detection, because large spatial dimension are needed

throughout the neural network architecture. End-to-end training of a CNN which prop-

agates features through time is shown by Li et al. [55]. They lower the computational

effort by detecting key frames. High-level features of key frames are reused for subsequent

frames to reduce effort. Another idea to lower complexity within the neural network is

by warping images from different positions [32] or time steps. The movement of pixels

between images can be computed with optical flow information Section 3.2.1. However, it

has to be noted that the computation of optical flow introduces additional complexity to

the problem. With the optical flow information, pixels or features of different time steps

can be moved to the same spatial location.

The work of Ranjan et al. [71] suggests, that when stacking consecutive frames to-

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

34 Chapter 3. Semantic Segmentation and Video Processing

gether along the channel dimension, a standard 2D convolution is capable of computing a

derivative across the temporal axis. This allows us to create temporal features by means

of a 2D convolution. This is applied in the work of e.g. Luc et al. [59], which combines

feature at different time steps by a convolution.

3.3 Video Semantic Segmentation with Recurrent Neural

Networks

The idea of combining video data with semantics is to improve the accuracy and consis-

tency of the output semantic segmentation. One possibility to utilize video data is by

using a recurrent neural network. It can forward features through time steps in a scene

and recursively apply a linear transformation followed by a nonlinear activation.

3.3.1 Vanilla RNN

The most simple form of a recurrent network is given by the vanilla RNN, where the

output y(t) at time step t is computed by the current input x(t) and the output y(t−1) of

the previous time step t− 1:

y(t) = φ(Wxx
(t) + Wyy

(t−1)). (3.4)

The parameters W are shared through time. The output y(t) is used as hidden state in for

the next time step t+ 1. The problem of the vanilla RNN is that during back-propagation

the chain rule causes many multiplications by the same factors W. For example, to

compute the gradients for time step t − 10, the weight matrix W has to be multiplied

10 times. This leads to numerical problems depending on the largest eigenvalues of the

matrix. In the scalar case, a factor between -1 and 1 leads to a vanishing gradient, for

other values the gradient will become very large.

3.3.2 LSTM

One technique to avoid the gradient vanishing problem is with Long Short-Term Memory

(LSTM) cells, introduced by Hochreiter et al. [34]. The LSTM has a more complex internal

structure compared to the vanilla RNN. It propagates a cell c(t) and a hidden state h(t)

through time. Within a LSTM cell, five non-linear activation functions are applied at each

time step. The weight matrix W contains four times the number of parameters of the

vanilla RNN. A diagram of the computations inside a LSTM cell is shown in Figure 3.2.

Reference:

 ()

Reference:

 ()

3.3. Video Semantic Segmentation with Recurrent Neural Networks 35

The outputs of the four different gates are computed by

i = σ(Wxix
(t) + Whih

(t−1)) (3.5)

f = σ(Wxfx
(t) + Whfh

(t−1)) (3.6)

o = σ(Wxox
(t) + Whoh

(t−1)) (3.7)

g = tanh(Wxgx
(t) + Whgh

(t−1)) (3.8)

and the output states are given by

c(t) = f � c(t−1) + i� g (3.9)

h(t) = o� tanh(c(t)) (3.10)

where h(t) is the output of the LSTM layer at time step t. If the input x is a vector of

length X and h is a vector of length H, the size of the weight matrix W is (4H)×(X+H).

c(t-1) c(t)

h(t-1)

h(t)

x(t)

stack

W ·

f

i

g

o

σ

σ

σ

tanh

⊙

⊙

⊙

+

tanh

Figure 3.2: LSTM Cell. The LSTM cell uses the previous states c(t−1),h(t−1) and the current
input x(t) to compute the new states c(t),h(t) where h(t) is the output of the LSTM at time step
t. Internally, the parameters W compute three gate activations f , i,o and one data activation g.
The gate activations act as on/off switches to regulated the information flow based on current
input and previous states. With the cell state information can travel through numerous time steps
without being revealed to the hidden state. Furthermore, the cell state avoids gradient problems,
because it only applies element wise multiplication with a small part of the weight matrix.

First, the current input and the previous hidden are stacked in a vector of dimension

H+X and multiplied with the weight matrix W. The result is passed trough four different

36 Chapter 3. Semantic Segmentation and Video Processing

activation functions to produces vectors f , i,g and o. The forget gate f contains values

in [0, 1] and determines which elements of the cell state to reset at the current time step.

Similarly, the input gate determines which elements of the input needed to be added to

the cell state. The input g is activated using a tanh(·) to keep values in the range [−1, 1].

Before revealing the values from the cell state to the hidden state, all values are again

passed trough a tanh(·) function to ensure values remain in [−1, 1]. Finally, the output

gate o decides how much the elements of the cell state are passed to the current hidden

state.

All gates of the LSTM are activated by a sigmoid function and can be interpreted

as element-wise on/off switches. A tanh activation functions ensure that output values

remain in the range [−1, 1]. The hidden state reveals information to the outside, whereas

the cell state acts as an internal counter. All values inside thee cell state vector can either

increase/decrease by a value up to one or it can be set to zero by the forget gate at a single

time step. The cell state also allows for efficient gradient flow in the backwards path.

3.3.3 LSTM and Video

There exists several possibilities how to handle the temporal information flow of a video

with a LSTM layer. One idea is to create a fixed feature representation at states c(t) and

h(t) using previous frames [79]. This feature representation can then be used by a decoder

LSTM to predict the future or it could simple be used to compute semantic segmentation

which is consistent with respect to the previous frames.

Another approach is to include multiple video frames in a single LSTM time step [58].

In this case the current frame t together with n − 1 past frames are concatenated in the

input vector x which is passed to the LSTM cell. The output h again contains n frames,

where only the last frame t is used for prediction. Since each frame is processed in multiple

LSTM steps, a consistency loss can be applied to the other frames to keep the prediction

consistent through various LSTM steps.

3.3.4 Convolutional LSTM

One problem of the traditional LSTM cell which raises when applied to computer vision

problems is the size of the input vector x. When including all channels and the spatial

dimensions, the number of parameters inside a fully connected LSTM becomes very large.

This can be avoided by only passing a compressed feature vector [58], instead of all feature

from a CNN feature extractor. However, in case of semantic segmentation, it is very

difficult to extract a compact feature representation.

Therefore, convolutional LSTMs (ConvLSTMs) [78] can be used. In contrast to the

fully connected LSTM, it convolves input and weights by applying a local filter

g′ = Wx ∗ x(t) + Wh ∗ h(t−1), (3.11)

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

3.3. Video Semantic Segmentation with Recurrent Neural Networks 37

where g′ contains the pre-activations of all four LSTM gates and “∗” denotes the convolu-

tion operator. This architecture saves parameters and therefore makes an application on

large feature vectors possible. It can be applied to video semantic segmentation because

high-level features should remain in a local neighborhood as long as the motion is minimal

such that objects stays in the same area within consecutive frames.

3.3.5 GRU

The Gated Recurrent Unit (GRU) introduced by Cho et al. [10] is another possible

recurrent module. It consists of two gates which are activated by the sigmoid function.

Additionally, a hyperbolic tangent is applied to input vector and hidden state after the

linear layer. The GRU cell is defined as

z = σ(Wxzx
(t) + Whzh

(t−1)) (3.12)

r = σ(Wxrx
(t) + Whrh

(t−1)) (3.13)

h(t) = (1− z)� h(t−1) + z� tanh(Wxhx
(t) + Whh(r� h(t−1))), (3.14)

where the parameters of the weight matrix W are shared through time, x(t) is the input

and h(t) is the output at time step t.

A diagram of the GRU cell is shown in Figure 3.3. Within the GRU, two gates control

the information flow. The update gate z decides how much information of an element

is reused from the previous state h(t−1) and how much is updated from the new input

x(t). A zero indicates that the old value is copied into the new state, whereas a one

uses information from the current input. The reset gate r is used to forget the values of

the previous hidden state by setting it to zero. If the value of the previous state is of

importance, the reset gate will be zero.

The configuration of the gates varies, as multiple versions of the GRU exist. They are

applied for e.g. future video prediction [69] and segmentation [62], but also for different

domains like language processing [12]. Similar to the ConvLSTM, the ConvGRU can be

used to create more consistent results while saving parameters as tested in [70].

3.3.6 LSTM vs GRU

When comparing LSTM and GRU one can observe several differences. The main difference

is that the LSTM cell propagates cell and hidden state whereas the GRU only propagates

the hidden state which produces the output. This gives the LSTM an additional channel

to propagate information over time. It also supports efficient back-propagation.

Another difference is the number of gates. The LSTM contains three gates, whereas

the GRU contains only two. The reset gate r of the GRU has a similar task as the forget

gate f of the LSTM. The update gate z of the GRU combines the input gate i and the

output gate o. As a consequence, the GRU needs 25 % parameters less compared to the

LSTM.

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

38 Chapter 3. Semantic Segmentation and Video Processing

h(t-1) h(t)

x(t)

W

·

r

z

σ

σ

tanh⊙

⊙

+

⊙

1 ‒

· +

stack

Figure 3.3: GRU Cell. The GRU cell contains a weight matrix W which is used to transform
the input and to compute the reset gate r and the update gate z at each time step. Both gates
are activated with the sigmoid function σ whereas the input is activated with the tanh function.
The hidden state h delivers the output and also propagates the information through time.

Both LSTM and GRU outperform the vanilla RNN which is shown by Chung et al.

[12]. When comparing the performance of LSTM and GRU, no clear winner is found.

Greff et al. [27] conclude that variations of the LSTM cell do not significantly improve,

however the GRU performs similar with reduced complexity.

The two introduced RNN architectures are the most popular ones, however, many

variations exist. Jozefowicz et al. [41] found slightly different architectures, which all

outperform vanilla LSTM and GRU on specific applications. Completely different

approaches include the Clockwork RNN [47] and the Independently RNN [55].

In summary, recurrent neural networks are a good tool for modeling temporal depen-

dencies as e.g. in video. They can process variable length scenes [17] as an input and

create variable length outputs as well. Both LSTM and GRU avoid the vanishing gradient

problem and produce good results on various applications. Depending on the application,

a slight modification of the architecture can even improve the results.

3.4 Street Scene Data Sets

In this work we want to focus on the domain of street scenes, therefore, we need to select

a street scene data set to apply the algorithms. Ideally, this data set should have ground-

truth semantic labels to support supervised learning methods. All scenes should have

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

3.4. Street Scene Data Sets 39

Class Name Group Color (RGB) Class Name Group Color (RGB)

Road Flat (128, 64, 128) Sky Sky (70, 130, 180)

Sidewalk Flat (244, 35, 232) Person Human (220, 20, 60)

Building Construction (70, 70, 70) Rider Human (255, 0, 0)

Wall Construction (102,102,156) Car Vehicle (0, 0,142)

Fence Construction (190,153,153) Truck Vehicle (0, 0, 70)

Pole Object (153,153,153) Bus Vehicle (0, 60,100)

Traffic Light Object (250,170, 30) Train Vehicle (0, 80,100)

Traffic Sign Object (220,220, 0) Motorcycle Vehicle (0, 0,230)

Vegetation Nature (107,142, 35) Bicycle Vehicle (119, 11, 32)

Terrain Nature (152,251,152)

Table 3.1: Cityscapes Classes. The Cityscapes dataset consists of 19 semantic classes. The
different classes together with their color coding and the group they belong to are shown in this
table.

video data to train and validate consistency between consecutive frames.

3.4.1 Real World Data

When developing algorithms for real-world application, it is most reasonable to use natural

image data. Three popular data sets are KITTI [24], Mapillary Vistas [68] and Cityscapes

[13]. We want to compare them, to decide which one suits best for our needs.

Firstly, the KITTI dataset offers sequential raw data with different scene length cap-

tured at 10 FPS. The data contains urban and country scenes with a resolution of

1392×512 pixels. The ground-truth semantic segmentation is provided for 400 images. In

addition, scene flow, depth and instance ground-truth exists. Accuracy results of different

algorithms are evaluated on a test set are reported on a benchmark list.

Secondly, the Mapillary dataset offers 25,000 RGB images with 20,000 annotations

at high resolution. The annotations exist for semantic, instance and panoptic segmen-

tation [46]. The panoptic segmentation combines instance segmentation with semantic

segmentation. Mapillary also provides a high score list for object detection and panoptic

segmentation results. However, this dataset does not provide sequential images.

Thirdly, the Cityscapes dataset consists of 5,000 scenes with 30 frames each at 17

FPS with 1024 × 2048 resolution. One frame for each scene is annotated with semantic

and instance segmentation ground-truth. Additionally, stereo data, GPS coordinates,

Ego-motion data and longer video sequences are available. The highest score is currently

83.6 % mIoU and DeepLab [9] is ranked 15th with 82.1 % mIoU. The 19 Cityscapes classes

used for semantic segmentation are shown in Table 3.1.

All of the three introduced datasets provide semantic segmentation ground-truth and a

benchmark list. Furthermore, Cityscapes and KITTI both have raw video data, where the

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

40 Chapter 3. Semantic Segmentation and Video Processing

Carla Class Cityscapes Class Carla Class Cityscapes Class

Building Building Road Road

Fence Fence Sidewalk Sidewalk

Other - Vegetation Vegetation

Pedestrian Person Car Car

Pole Pole Wall Wall

Road Line - Traffic Sign -

Table 3.2: Mapping Carla to Cityscapes Classes. The mapping from Carla to Cityscapes semantic
classes is shown in this table. Altogether, twelve Carla classes reduce to nine valid Cityscapes
classes.

KITTI sequence length varies. Other dataset (e.g. CamVid [4]) do not provide sufficient

video data.

3.4.2 Synthetic Street Scene Data

The advantage of synthetic data compared to real world data is that the corresponding

ground-truth information (e.g. depth information, semantic segmentation, vehicle param-

eters, weather conditions) can be generated easily.

Two simulators which are build using the Unreal Engine are AirSim [76] and Carla

[18]. Both can be used for realistic driving simulations. Additionally, AirSim also supports

drone simulations. The access for car control and camera data collection is provided

through an API which can be accessed with Python. The Python API for Carla supports

semantic data generation of 12 different classes. A mapping from Carla to Cityscapes

classes is shown in Table 3.2

One disadvantage of the driving simulators is that scenarios have to be created

in order to generate realistic scene data. The Synthia dataset by Ros et al. [72]

provides over 200,000 already generated synthetic images. The results indicate

that the addition of synthetic data improves mIoU on real world data. Especially,

training with combined real word and synthetic data works very well. It increases

performance of semantic classes representing small objects. It has to be noted that

number of validation classes is only 11. Benchmarks on the Cityscapes dataset

consider 19 valid classes, which means that it is more difficult to achieve a high mIoU score.

Fortunately, there are a lot of street scene data sets with semantical annotations.

This prevents the need of expensive manual labeling. However, no annotated video

data exists, because the task takes a lot of time even if many people work together.

Nevertheless, synthetic data from driving simulators can be used to create sequential

images with perfectly accurate ground-truth.

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

3.4. Street Scene Data Sets 41

To summarize, this chapter compared methods for solving the task of frame-to-frame

consistent semantic segmentation. A semantically segmented image can be computed

by traditional methods such as graph cut or clustering. Recently, CNNs are used more

frequently for this task. Layers with dilated convolutions increase the receptive field while

keeping the number of parameters low. Metrics for comparing segmentation are Total

Accuracy and mIoU, whereas the latter is predestined for street scenes. CNNs can be

used together with RNNs to combine the tasks of semantic segmentation and feature

propagation over time. Especially, ConvLSTM are useful because of their reduced number

of parameters. Currently, many different street scene datasets are used to compare the

performance of computer vision algorithms. However, none of them provides ground-truth

information for consecutive frames, because of the large afford of manual labeling. This

problem can be tackled by synthetically created data.

4
Frame-to-Frame Consistent Semantic Segmentation

Contents

4.1 Network Architectures . 44

4.2 Video Data . 46

4.3 ConvLSTM . 48

4.4 Time Convolution . 53

4.5 Consistency Constraint . 53

After related work has been discussed, we will focus on the methods used in this thesis.

Most importantly, the focus is on semantic segmentation. From the various possibilities

mentioned previously, we want to develop a method which has the potential to outper-

form state of the art semantic segmentation algorithms. Convolutional neural networks

are selected because of recent success in the field of computer vision. Especially on the

analyzed dataset benchmarks they performed very well.

Despite the selection of the architectural framework, the data for training the model

and benchmarking is crucial. Most important aspects when selecting a suitable data set are

size and reference scores to be able to evaluate the performance against other algorithms.

Both criteria are fulfilled by the Cityscapes data set. It provides a lot of video data and

is used in many recent works as a benchmark.

In addition, the utilization of temporal information is introduced as well. It has to be

included efficiently to maintain low computation cost while improving consistency. For

successful training, an objective function has to be selected which enforces consistent and

accurate semantic segmentation over time. The objective of the methods explained in this

chapter is to achieve frame-to-frame consistent semantic segmentation.

43

44 Chapter 4. Frame-to-Frame Consistent Semantic Segmentation

4.1 Network Architectures

Since the problem of semantic segmentation is addressed by CNNs, suitable architectures

have to be defined. We focus on computational effort, because the extension to consistent

multiple frame processing requires additional resources. Two architectures were chosen to

proof cross network validity. The first is a simple experimental architecture named SSNet.

The second is the well established ESPNet which computes semantic segmentation with

low computational cost.

4.1.1 SSNet

The Semantic Segmentation Network (SSNet) is a seven layer fully convolutional architec-

ture which computes semantic segmentation. It process three channel RGB input images

and outputs 19 channels. In between the features are propagation using 64 channels. All

layers use input padding to keep spatial dimensions constant. First, the low level features

are created at the layers one and two by a convolution of filter size 3 × 3. Then the low

level features are processed using four layers of 3× 3 convolutions with dilate rate 2 and

4 to increase the size of the receptive field. Finally, the mapping from 64 to 19 output

channels is again computed by a 3 × 3 convolution. The last layer activation function is

a softmax function, which allows the network to output a probability volume. All other

layers implement the ReLU activation function. A network diagram is shown in Figure 4.1.

The network computation is given by

P = SSNet(X), (4.1)

where X ∈ RM×N×3 is the RGB input image of resolution M ×N and P ∈ RM×N×19 is

the output probability volume. P fulfills the properties

19∑
c=1

pm,n,c = 1 ∀m = 1 . . .M, n = 1 . . . N and

pm,n,c ∈ [0, 1] ∀m = 1 . . .M, n = 1 . . . N, c = 1 . . . 19.

The semantic class prediction Ŝ ∈ NM×N is obtained by the argmax along the third

dimension:

ŝm,n = arg max
c=1...19

pm,n,c. (4.2)

At last layer the receptive field is 31× 31. The total number of parameters is 197,395.

The SSNet architecture consists of standard and dilated convolutions which use the

ReLU activation function. It is a simple seven layer model whose semantic segmentation

output is considered as a validator for experiments.

4.1. Network Architectures 45

3x
3

R
G

B
 I

m
g

(3
,6

4)

3x
3(6

4,
64

)

3x
3,

 d
il2(6

4,
64

)

3x
3,

 d
il2(6

4,
64

)

3x
3,

 d
il4(6

4,
64

)

3x
3,

 d
il4(6

4,
64

)

3x
3(6

4,
19

)

SS

so
ft

m
ax

(·
)

Figure 4.1: Architecuture of SSNet. The path from the RGB input image to the semantic seg-
mentation output is detonated by arrows. Each convolutional layer is represented by a rectangular
box containing the filter size. Dilated convolutions are highlighted in pink. Parenthesis next to
each layer contain the number of input resp. output channels. All layers, except the last layer one,
use ReLU activation functions.

4.1.2 ESPNet

The second network architecture used is the ESPNet [66]. This architecture was chosen

because it provides good semantic segmentation performance on the cityscapes benchmark

while keeping the model complexity low. Fast computation is especially important when

considering the video setting. The network which consists of an encoder and a decoder is

shown in Figure 4.2.

3x
3

R
G
B (3
,1
6)

C
on
ca
t

E
SP

(1
9,
64
)

2x
E
SP(6
4,
64
)

C
on
ca
t

E
SP

(1
31
,1
28
)

3x
E
SP(1
28
,1
28
)

1x
1(1
31
,1
9)

1x
1(2
56
,1
9)

so
ft
m
ax
(·
) 1x
1

S
S

(3
5,
19
)

C
on
ca
t

2x
2T

(1
9,
19
)

E
SP

(3
8,
19
)

C
on
ca
t

2x
2T

(1
9,
19
)

2x
2T

(1
9,
19
)

R
G
B

R
G
B

C
on
ca
t

Figure 4.2: Architecuture of ESPNet. RGB images are included at three different resolutions.
Each layer is represented by a rectangular box containing the module name. Red and green boxes
reduce respectively up-sample spatial dimensions by af factor of two. Parenthesis next to each
layer contain the number of input and output channels.

First, the encoder uses the three channel input image to create 256 channel feature

encoding. Thereby, spatial dimensions are decreases by a factor of 8. At the first layer, a

Reference:

 ()

46 Chapter 4. Frame-to-Frame Consistent Semantic Segmentation

3×3 convolution extracts low level features. The following layers in the decoder efficiently

increase the receptive field by the ESP module. These modules consists of a pointwise

convolution followed by dilated convolutions with different dilation rates. This allows a

single ESP module to create an receptive field of 33 × 33, while keeping the number of

parameters low.

Second, the decoder uses output features from the encoder at three different level.

The high-level, mid-level and low-level features are up-sampled using three transposed

convolutions. Finally, the 19 channel output probability volume is given by

P = ESPNet(X), (4.3)

where X ∈ RM×N×3 is the RGB input image of resolution M × N and P ∈ RM×N×19

is the output probability volume with the same properties as in Equation (4.1). The

semantic segmentation is obtained by the argmax in Equation (4.2).

The ESPNet encoder-decoder architecture with a total of 202,000 parameters which

allows it to be considered a lightweight neural network semantic segmentation model. In

its core, the ESP module supports efficient computation through a point-wise convolution

followed by dilated convolutions with different dilation rate. All layers, except the last,

use PReLU activation functions. The network outputs a 19 dimensional probability vector

for each pixel in the input image.

4.2 Video Data

The CNNs are trained on the Cityscapes data set [13], because it provides consecutive

data. It provides enough video data to allow training of the 19 semantic classes. One

big advantage is that the single frame data is created by taking 20th frame of each video

scene consisting of 30 frames. This allows to test and compare video trained to single

frame models. Unfortunately, due to the high effort, no ground-truth labeling except for

the 20th frame exists. However, this problem also exists with other datasets. All in all,

2975 training and 500 validation scenes are used.

4.2.1 Semantic Segmentation Oracle

Since the Cityscapes dataset does not provide a ground-truth semantics for video data, the

labels are created using a model which performs well at single frame data. Therefore, the

DeepLab Xception [11] network pretrained for Cityscapes data was used [9]. It consists of

71 layers and achieves 80.31 % mIoU semantic class score at the Cityscapes validation set.

The models was pretrained using full 1024 × 2048 Cityscapes resolution. Consequently,

the network predicts the segmentation map Ŝ ∈ N1024×2048 for the corresponding input

Reference:

 ()

Reference:

 ()

Reference:

 ()

4.2. Video Data 47

image X ∈ R1024×2048×3,

S = Ŝ = DeepLab(X), (4.4)

where S becomes the ground-truth for our experiments. One example of how the DeepLab

oracle performs compared to hand-labeled groundtruth is shown in Figure 4.3. Some de-

tails of mostly distant objects are not labeled truely by the oracle. Nevertheless, differences

are only minor and most objects are segmented accurately. A method of how to overcome

the problems introduced by using not completely perfect groundtruth is by using synthetic

data.

(a) RGB Input (b) DeepLab Oracle (c) Ground Truth

Figure 4.3: DeepLab Oracle. Comparing the semantic segmentation of the DeepLab model (b)
to the fine labeled Cityscapes ground-truth (c) of the RGB input (a). Minor differences which can
be observed are highlighted by orange boxes.

4.2.2 Synthetic Data

The problem with the Cityscapes data set is that it does not provide ground-truth semantic

segmentation for video data. Although the previously described oracle generates ground-

truth with high mIoU score, the prediction consistency over multiple frames in a scene is

not given, because each frame is processed individually. Therefore, this approach is not

well suited for consistency training.

To overcome this issue, the CARLA Simulator [18] is used to create perfectly accurate

and consistent ground-truth. The idea is to especially enforce consistency learning with

this synthetic data set. However, it should also not negatively effect semantic class scores

because of the synthetic RGB images. In total 3600 scenes of 30 frames each of both

input data X̄ ∈ R512×1024×3 and semantic segmentation S̄ ∈ N512×1024 are generated. An

example data pair is shown in Figure 4.4.

The method of combining data from the a slightly inaccurate prediction oracle with

the perfectly accurate synthetic data generator should allow the supervised learning algo-

rithm to produce results with high semantic segmentation accuracy while also maintaining

consistency over multiple frames within a scene.

Reference:

 ()

48 Chapter 4. Frame-to-Frame Consistent Semantic Segmentation

(a) Carla RGB (b) Ground Truth

Figure 4.4: Carla Data. Synthetic data generation using the Carla simulator: RGB image (a)
and semantic segmentation (b).

4.3 ConvLSTM

In order to use the temporal information available through the video data, a LSTM cell is

added to the single frame architecture. It allows the propagation of previously extracted

features to future frames. Because fully connected LSTMs need too many parameters for

high resolution image data, Convolutional LSTM are used. However, it has to be ensured

that the filter size is large enough to track motion boundaries.

The cell state C ∈ RM×N×D and the hidden state H ∈ RM×N×D are initialized using

zero, random [0, 1) or learned initialization. In the learned initialization we want the net-

work to determine good initial values for a given data set. Then, the states are propagated

through all time steps in a scene in the stateful setting. In the stateless setting, C and

H are reinitialized after a given sequence length ranging from 2 to 11 time steps. The

filter-size inside the cell depends on the feature level the cell is operation on ranging from

1× 1 to 11× 11.

Three different methods of how the ConvLSTM is integrated at a given layer are

suggested. They are depicted in Figure 4.5. The Single ConvLSTM can be used in layers

where the input channels cannot be distinguished semantically. In contrast, the Parallel

ConvLSTM layer convolves each channel separately. Additionally, the Parallel ConvLSTM

with Weight Sharing layer also shares weights across channels. This causes each channel

to use the same ConvLSTM cell.

The input X over which the convolution is computed consists of the output from the

previous layer in the architecture, stacked with the hidden state H(t−1) from the previous

time step t − 1 of the ConvLSTM. X is also zero padded to ensure constant spatial

dimensions throughout the layer. C and D represent the number of input respectively

output channels. The variable g = 1 . . . 4 selects the activation for one of the four LSTM

gates.

4.3. ConvLSTM 49

Prev Layer Next LayerConvLSTM

(·, C) (C, D) (D, ·)
Channel 1,...,C

(a) Single ConvLSTM

Prev Layer Next Layer

(·, C) (D, ·)

ConvLSTM-1

(1,)

ConvLSTM-C

Channel 1

D
C

(1,)
D
C

Channel C

.

.

.

.

.

.

.

.

(b) Parallel ConvLSTM

Prev Layer Next Layer

(·, C) (D, ·)

ConvLSTM

(1,)

ConvLSTM

Channel 1

D
C

(1,)
D
C

Channel C

.

.

.

.

.

.

.

.

(c) Parallel ConvLSTM with Weight Sharing

Figure 4.5: ConvLSTM Layer. Comparing three different methods to include a ConvLSTM layer
(orange) into an existing architecture. The number of input and output channels for each layer
are written inside parenthesis next to the box.

Single ConvLSTM Our first method uses a single standard ConvLSTM cell given by

au,v,d,g = (X ∗W)u,v,d,g =
C+D∑
c=1

P∑
p=1

Q∑
q=1

xu+p−1,v+q−1,cwp,q,c,d,g, (4.5)

with input X ∈ RM×N×(C+D). The number of parameters for the standard method is

Lparams = (C +D) · 4D · P ·Q+ 4D. (4.6)

50 Chapter 4. Frame-to-Frame Consistent Semantic Segmentation

This method is useful when the input features need to be treated independently from each

other. It is the most basic method, which can be used when no meaningful separation

between the channels of the layer is given.

Parallel ConvLSTM The second method uses C parallel ConvLSTM cells, where each

cell treats a separate channel (e.g. a semantic class). In this layer, a single cell is given by

au,v,d,g = (X ∗W)u,v,d,g =

1+D
C∑

c=1

P∑
p=1

Q∑
q=1

xu+p−1,v+q−1,cwp,q,c,d,g, (4.7)

with input X ∈ RM×N×(1+D
C

) for each cell. The number of output channels for each

individual cell is given by D
C . The number of parameters for the whole layer is

Lparams = C ·
((

1 +
D

C

)
· 4D
C
· P ·Q+ 4

D

C

)
. (4.8)

Note that here each output channel is processed separately and thus it is very well suited

for enforcing consistency.

Parallel ConvLSTM with Weight Sharing The third method uses C parallel Con-

vLSTM cells which share their weights. They can also be interpreted as a single cell

where each input channel is passed through individually. The convolution computation

is equal to Equation (4.7). The input for each cell is also given by X ∈ RM×N×(1+D
C

).

However, every ConvLSTM has the same weight matrix W. Therefore, the total number

of parameters for the layer drops to

Lparams =
1

C
· ((C +D) · 4D · P ·Q+ 4D). (4.9)

This method is the computational least expensive, because it treats each channel the

same over multiple time steps.

Having introduced the different types of ConvLSTM layers, it is also important to

include them reasonably into the single frame architectures VSSNet and ESPNet. The

single ConvLSTM layer can be used when no meaningful separation between the channels

at the layer can be drawn. A parallel ConvLSTM layer can be implemented at the output

layer of the network, because at this layer each ConvLSTM can operate on a separate

semantic class.

4.3.1 VSSNet

The Video Semantic Segmentation Network (VSSNet) is an extension to the SSNet with a

ConvLSTM layer. The main purpose for this architecture is to verify that the ConvLSTM

4.3. ConvLSTM 51

can be used to compute frame-to-frame consistent predictions. In contrast to the SSNet the

last layer is replaced by a ConvLSTM. This allows to monitor the ConvLSTM separately,

because the last layer creates the 19 channel output semantic. An architecture diagram

consisting of three time steps is shown in Figure 4.6.

SSNet
Layers 1-6

Xt-n

(3,64)

LSTM 3x3

(64,19)

St-n

softmax(·)

SSNet
Layers 1-6

Xt-1

(3,64)

LSTM 3x3

(64,19)

St-1

softmax(·)

SSNet
Layers 1-6

Xt

(3,64)

LSTM 3x3

(64,19)

St

softmax(·)

. . .

Figure 4.6: Architecuture of VSSNet. Semantic Segmentation is computed for a sequence of n+1
time steps (green). The ConvLSTM (red) layer propagates features through time.

When analyzing this architecture, we observe that both, the number of layers and the

size of the output receptive field stays the same compared to the SSNet. However, the

number of parameters increases because of the ConvLSTM. Considering a single classical

ConvLSTM with filter size 3× 3, the number of parameters increases by 56,848 (29 %).

4.3.2 ESPNet L1

Similar to the SSNet, the ESPNet is also modified using ConvLSTM layers to allow

for temporal information flow. Altogether, four different positions of the ConvLSTM

layer are considered. Three at low (ESPNet L1d), middle (ESPNet L1c) and high

(ESPNet L1b) feature level at the encoder and one at the last layer of the decoder

(ESPNet L1a), similar to the VSSNet. The lowercase letter at the end of the architecture

indicates the position of the ConvLSTM layer within the architecture. The ConvLSTM

layer of ESPNet L1a is directly at the output layer whereas the ConvLSTM layer of

ESPNet L1d processes feature close to the input of the network. The four different

positions of the ConvLSTM are depicted in Figure 4.7.

When considering a 3 × 3 standard convolutional ConvLSTM cell the complexity

of the architecture changes as follows. The ESPNet L1a needs an additional 26,068

parameters at the last layer of the architecture. At the lowest feature level of the encoder,

ESPNet L1d only needs 18,496 parameters. The other ConvLSTM layers at the encoder,

ESPNet L1c and ESPNet L1b need 102,676 respectively 188,176 additional parameters.

This increases the number of parameters up to 93 % compared to the original ESPNet

52 Chapter 4. Frame-to-Frame Consistent Semantic Segmentation

3x3

R
G
B(3,16)

C
oncat

E
SP (19,64)

2xE
SP (64,64)

C
oncat

E
SP (131,128)

3xE
SP (128,128)

L
1c (131,19)

L
1b (256,19)

softm
ax(·)

1x1

S
S

(35,19)

C
oncat

2x2
T (19,19)

E
SP (38,19)

C
oncat

2x2
T (19,19)

2x2
T (19,19)

R
G
B

R
G
B

C
oncat

L
1d

L
1a (19,19)

(16,16)

Figure 4.7: ESPNet with LSTM Layers. Four different positions for including a ConvLSTM
layer (orange) into the existing ESPNet architecture. Dashed boxes indicate that only one Con-
vLSTM layer is present in a single architecture. L1b, L1c and L1d replace 1× 1 channel reduction
convolutions while L1a adds an additional layer to the architecture.

for the ESPNet L1b extension. However, the total number of parameters is still small

compared to other semantic segmentation models (e.g. [9]). Also, the architecture with

the highest number of parameters ESPNet L1b, has most parameters in the ConvLSTM

layer which is located on a high feature layer, where spatial dimensions are low. This

causes computational effort to remain low.

The introduction of the ConvLSTM layer allows for temporal information flow to share

features between frames within a scene. First, the VSSNet architecture provides a simple

and comprehensible model. The ESPNet L architectures compare ConvLSTM layers at

different feature levels and provide results in a state-of-the-art network.

Reference:

 ()

4.4. Time Convolution 53

4.4 Time Convolution

Besides the principle of using a LSTM cell to propagate temporal information, this can

also be done by means of a convolution as seen in [59]. The frames of each time step are

stacked together in a single volume where the input channels correspond to the time axis.

A convolution then adds the filters over time. A standard convolution is given by

au,v,d = (X ∗W)u,v,d =

T∑
t=1

C∑
c=1

P∑
p=1

Q∑
q=1

xu+p−1,v+q−1,c,twp,q,c,t,d, (4.10)

with input X ∈ RM×N×C×T where T is the number of time steps.

The number of parameters increases by the factor T :

Lparams = C · T ·D · P ·Q+D. (4.11)

Compared to the LSTM extension, the time convolution can only consider features

of the last T time steps. Also, the number of time steps is fixed and cannot changed

to process shorter scenes. Convolving over time can result in filters which compute time

derivatives as shown in [71]. In order to detect motion, the filter size has to be large

enough to track boundaries throughout T time steps.

4.4.1 ESPNet T

The time convolution is added at the last layer of ESPNet. It processes the 19 output layers

to provide a consistent prediction. A residual connection is added to allow surpassing

old features. Two different architecture are introduced. ESPNet T computes the time

convolution on T ESPNet outputs while ESPNet T2 uses only one ESPNet output and

T − 1 outputs from the previous time convolutions.

The number of parameters increases by 16,264 for a 3× 3 standard convolution using

T = 5 time steps. It is valid for both ESPNet T and ESPNet T2. Compared to a

ConvLSTM layer at ESPNet L1a, the number of parameters is lower by 38 %.

4.5 Consistency Constraint

The aim of this thesis is to compute semantic segmentation and provide consistency

through multiple frames in a video setting. As we decided to tackle these problems with

neural networks, we need to enforce accuracy and consistency using a suitable objective

function. Therefore, the loss function L consists of two terms:

L(S,P) = λceLce(S,P) + λinconsLincons(S,P), (4.12)

Reference:

 ()

Reference:

 ()

54 Chapter 4. Frame-to-Frame Consistent Semantic Segmentation

where Lce penalizes the segmentation error, Lincons penalizes inconsistencies and λce, λincos

are hyper-parameters. Inside the loss function, the sum is computed over T time steps,

the image dimensions M×N and the number of valid semantic classes |S|. Two important

function include the Kronecker delta function:

δ(x, y) =

{
1 if x = y

0 else
, (4.13)

and the function to determine valid pixels in the groundtruth semantic segmentation S:

ω(s) =

{
1 for s ∈ S
0 for s /∈ S

. (4.14)

Cross Entropy Loss Lce is computed using the cross-entropy between target S ∈
NT×M×N and predicted probability space P ∈ RT×M×N×|S|:

Lce(S,P) = − 1

V

T,M,N∑
t,m,n=1

 |S|∑
c=1

δ(st,m,n, c) · log(pt,m,n,c)

 · ω(st,m,n) (4.15)

where V is the number of valid pixels in a sequence given by

V =

T,M,N∑
t,m,n=1

ω(st,m,n). (4.16)

.

Consistency Loss: All Pixels All Classes The second term which enforces consis-

tency between consecutive frames in a scene is computed using three different methods.

First, we measure the absolute difference between all consecutive frames in a sequence

using

Lincons(S,P) =
1

C

T−1,M,N∑
t,m,n=1

 |S|∑
c=1

||pt,m,n,c − pt+1,m,n,c||1

 · ω(st,m,n) · δ(st,m,n, st+1,m,n)

(4.17)

where C is the number of valid and consistent pixels in a sequence given by

C =

T−1,M,N∑
t,m,n=1

ω(st,m,n) · δ(st,m,n, st+1,m,n). (4.18)

We can also use squared differences instead of the `1-norm, in order to penalize outliers

harder.

4.5. Consistency Constraint 55

Consistency Loss: Correctly Predicted Pixels All Classes This method only

considers pixels which are already predicted correctly in one of two consecutive images.

This ensures that incorrect pixels are only affected by the cross-entropy loss. Such a

inconsistency loss function is defined as

Lincons(S,P) =
1

C

T−1,M,N∑
t,m,n=1

 |S|∑
c=1

||pt,m,n,c − pt+1,m,n,c||1

 · ω(st,m,n) · δ(st,m,n, st+1,m,n)·

ψ(pt,m,n, st,m,n,pt+1,m,n, st+1,m,n), (4.19)

where the number of valid and consistent pixels C is computed as in Equation (4.18).

Differences compared to Equation (4.17) are highlighted in green. The function which

determines if one pixel is predicted correctly is given by

ψ(p1, s1,p2, s2) = min(δ(arg max(p1), s1) + δ(arg max(p2), s2), 1) (4.20)

Again, the `1-norm can be substituted by other error functions.

Consistency Loss: Correctly Predicted Pixels True Class Third, the inconsis-

tency loss function Equation (4.19) can be extended by only considering the error of the

true class:

Lincons(S,P) =
1

C

T−1,M,N∑
t,m,n=1

 |S|∑
c=1

δ(st,m,n, c) · ||pt,m,n,c − pt+1,m,n,c||1

 · ω(st,m,n)·

δ(st,m,n, st+1,m,n) · ψ(pt,m,n, st,m,n,pt+1,m,n, st+1,m,n), (4.21)

where the differences compared to Equation (4.19) are highlighted in green. In

comparison, the previously introduced loss function produces approximately a |S|-times

higher error. This issue can be corrected by choosing a larger hyper-parameter λincons.

We introduced three variants of loss functions which allow training for consistency.

Slightly different loss functions can be chosen by substituting the `1-norm by a different

error term or by adding certainty threshold to trigger the consistency loss only when the

cross-entropy has already trained for semantic.

To summarize, we presented five methods to tackle the frame-to-frame consistent se-

mantic segmentation problem. Computationally inexpensive CNN architectures are used

to compute semantic segmentation. Ground-truth video data is generated through a pre-

diction oracle and a synthetic tool to allow supervised learning. Additionally, the CNN

architectures are modified by adding ConvLSTM layers and time convolution layers to

allow propagation of features through consecutive frames. To ensure that the training

56 Chapter 4. Frame-to-Frame Consistent Semantic Segmentation

algorithm supports consistent semantic segmentation, the objectives are formulated in the

loss function. The results of implementing the methods are presented in Chapter 5.

5
Experiments

Contents

5.1 Hardware and Software . 58

5.2 Semantic Segmentation with SSNet 58

5.3 SSNet with Temporal Information Flow 60

5.4 Semantic Segmentation with ESPNet 62

5.5 ESPNet with Temporal Information Flow 65

5.6 Adding Synthetic Data . 73

This chapter focuses on the implementation of the methods introduced in Chapter 4.

In order to produce frame-to-frame consistent semantic segmentation, the experiments

are conducted incrementally. In the beginning we keep complexity low by using a small

training data set and a simple model. This allows for early adjustments of the training

setting and hyper-parameters. The first experiments focus on semantic segmentation using

the SSNet architecture. After the experiments on single frame data deliver acceptable

results, we add sequential data to train the SSNet towards multiple frame consistency.

Training with the sequential data set causes changes (e.g. time for one iteration, sequence

length for each step, order of scene processing) in the setting, which need to be evaluated.

We modify the architecture SSNet to contain a ConvLSTM layer which forwards the

features through time. Advantages and disadvantages of this modification need to be

evaluated. After we finish the experiments on the simple SSNet architecture successfully,

we test the methods suggested for the ESPNet.

Similar to the SSNet architecture, we start with single frame evaluation for the ES-

PNet. Results need to be inline with existing benchmarks to ensure correctness of the

model. After state of the art results are achieved for single frame training, the model is

extended to process video data. To process the video data, we add ConvLSTM layers

to the architecture as well as a convolution over the time dimension. In addition, the

57

58 Chapter 5. Experiments

inconsistency loss term from Equation (4.12) at the objective function ensures training for

consistency.

To enlarge the training set we create synthetic data which provides completely precise

segmented input data to the CNN. Therefore, the street scene simulator CARLA [18] is

passed through various scenarios to generate a dataset similar to the size of Cityscapes.

All of the experiments are compared qualitatively as well as quantitatively via suitable

metrics for semantic accuracy and consistency.

5.1 Hardware and Software

We want to specify the software and hardware environment in which the experiments are

performed. The hardware is build around an Intel Core i7-8700 CPU. Two graphics cards,

GeForce RTX 2080 TI and GeForce RTX 2070, are used for parallel model training. To

support fast parallel computation on the GPU CUDA 10 is installed together with CuDNN

7. On the implementation level, Python is used for programming tasks. Various Python

extensions are used for different tasks of this work. Pretrained models e.g. DeepLab

are evaluated with TensorFlow 1.12. We implement most CNN models in PyTorch 1.0.

Within PyTorch, we use the nn package for model creation, the utils.data package for

parallel data loading and the autograd module computes the computational path for

gradient optimization methods. Training and test results are logged and visualized with

the Tensorboard package. To summarize, our development environment is considered state

of the art in terms of quality.

5.2 Semantic Segmentation with SSNet

We perform the first experiments on the SSNet architecture and train with the Cityscapes

single frame data set. Later, we add video data together with a consistency loss function

to train the single frame architecture for the video setting. The purpose of this exper-

iments is to evaluate the performance of the SSNet architecture as well as to create a

semantic segmentation baseline for future modification to the architecture i.e., adding the

ConvLSTM.

5.2.1 Training Setting

Our main objective is to keep the training setting as simple as possible while still producing

comparable results. It should allow for fast convergence despite the additional complexity

of video prediction. We use the following parameters for all experiments.

Data Preparation The training data has RGB color channels and the intensity values

have 8 bit precision. Before the data is handed over to the network it is normalized result-

ing in a 32 bit precision floating point numbers between [0, 1]. No additional preprocessing

Reference:

 ()

5.2. Semantic Segmentation with SSNet 59

steps are applied. The original data resolution of the Cityscapes data set is 1024 × 2048

(height × width), however, we down-sample images to 512× 1024 and 256× 512 for train-

ing using bilinear interpolation. We also down-sample the corresponding ground-truth

labels using nearest neighbor interpolation to ensure that each pixel has a designated

class. All experiments at image size 512 × 1024 are referred to as high resolution experi-

ments, whereas all experiments at image size 256 × 512 are referred to as low resolution

experiments. For the sake of straightforward comparison, we do not perform any data

augmentation steps.

Network Initialization For every image which we hand over to the network, a zero

padding is added at each layer to ensure that the spatial dimensions stay constant through-

out the convolutional layers. This is necessary because of the dense prediction task seman-

tic segmentation. Since the network uses mostly rectified activation units we initialize the

weights of these layers with the method suggested by He et al. [31]. Biases of all layers are

initialized with zero. The output of our last layer is activated using a Softmax activation

function to generate the output probability volume.

Learning Parameters During the training process the cross-entropy loss presented in

Equation (4.15) is computed between the prediction and the ground-truth labels. Fur-

thermore, different inconsistency loss terms are added to train for consistency using a

single frame model. After the loss is back-propagated by the autograd package, we use

the Adam optimizer with learning rate η = 10−4 to update the parameters of our model.

Early stopping defines the end of the training phase.

5.2.2 Results

After training on different settings, the learned parameters are evaluated using the official

Cityscapes validation set. In case of SSNet evaluation, the validation set only contains

single frame 512× 1024 images. Without video data, the SSNet reaches 80.3 % prediction

accuracy and 27.9 % class mIoU. When using all training video frames, results improve

to 87.1 % Acc and 37.5 % mIoU. This indicates that the increase in training data already

improves performance. Qualitative results are shown in Figure 5.1. It can be seen that

the sequence training improves overall qualitative results as well. On the one hand larger

semantic areas a classified homogeneously, on the other hand, small areas in the distance

are more accurate as well. Overall it can be seen that the network has difficulties identi-

fying large objects, which is a consequence of the relatively small receptive field of 31× 31

pixels. However, this network already delivers sufficient results for comparison with the

VSSNet.

Reference:

 ()

60 Chapter 5. Experiments

(a) RGB Image (b) Ground-Truth

(c) SSNet SF (d) SSNet SEQ

Figure 5.1: Results of SSNet. RGB input (a) and ground-truth semantics (b) from the Cityscapes
validation set. We compare quantitative results of the single frame trained SSNet (c) to the
sequence trained SSNet (d). Adding sequence data improves street class prediction (bottom right
box) and also details in the distance are more accurate (centered box).

5.3 SSNet with Temporal Information Flow

In order to provide more consistent outputs the additional time information is propagated

in the VSSNet architecture. At the last layer of VSSNet a ConvLSTM is added to forward

high-level features from previous scenes to the current scene. In this multiple frame setting

data has to be prepared in sequence to allow the gradient to optimize the parameters

over consecutive frames. We compare different image resolutions, stateful versus stateless

LSTM cells and a loss function with an inconsistency term. Adding the ConvLSTM layer

also requires to adopt the training process. The parameters of the network are optimized

using multiple time steps as input.

5.3.1 Validation Metrics

The results which we obtain are reported using four metrics: Mean Intersection over Union

(mIoU), Accuracy (Acc), Consistent pixels (Cons) and Consistent but semantically wrong

pixels (ConsW). MIoU and Acc are defined in Equation (3.2) and Equation (3.1). Cons

is given by the number of pixels which keep the same semantic label in two consecutive

images. Only pixels which need to have the same label according to the ground-truth are

5.3. SSNet with Temporal Information Flow 61

considered. We define ConsW as a subset of Cons, which consists of pixels with the wrong

semantic label. Therefore, a lower ConsW score is considered better. We report all four

metrics in percent.

5.3.2 Training with LSTM

We generate semantically labeled Cityscapes sequence data by the DeepLab oracle. Alto-

gether 2,975 scenes where each scene consists of 30 frames are used for training the VSS-

Net. Each scene is separated into sequences consisting of 2 to 10 frames. These smaller

sequences allow LSTM parameter optimization for multiple time steps in a single training

step. If we choose sequence length 5 and no overlap between consecutive sequences, we will

have 6 sequences in each scene. The sequences can be seen as a subdivision of the scene.

To avoid overfitting to the current scene, the sequences are processed in frame number

order. This means that at the first training stage, sequence one of each scene is passed to

the network. At the second training stage, sequence two of each scene is processed. At

the end of each training iteration the last sequence of each scene is processed.

One problem of this approach is that during stateful LSTM training, the cell and

hidden LSTM states need to be saved for each scene. However, this can not be done in 32

GB memory. Therefore, we introduce block training, where each block contains states of

up to 1,000 scenes. This avoids overfitting to a single scene while also allowing states to

maintain in fast CPU memory.

Res 128 × 256 and Res 512 × 1024 Training with higher resolution produces better

results. After training with an input resolution of 128× 256, we achieve 31.9 % mIoU and

82.5 % Acc. Switching to input size 512× 1024 increases performance to 38 % mIoU and

87 % Acc. Results are compared at the validation resolution 512× 1024. We upscale the

segmentation outputs to this resolution with nearest neighbor interpolation.

Next, if we additionally enable the squared difference inconsistency loss term by setting

λincons = 10 in the objective function, we observe more consistent outputs. At resolution

128× 256 consistency increases from 97 % to 99 % and at 512× 1024 consistency increases

from 95.2 % to 98.2 %. Detailed results are shown in Table 5.1.

State Transistion We compare stateful and stateless training of the LSTM cell

(Section 4.3). With stateless training the LSTM cell is initialized new after every

sequence, whereas stateful training transfers the states trough all 30 scene frames. For

this experiment, we use high resolution and no consistency loss. Results show that

consistency and accuracy increase from 86.8 and 92.5 to 88.4 and 95.2 % respectively

when training statefully. Therefore, the following trainings are performed with stateful

LSTM cells.

62 Chapter 5. Experiments

Experiment Training mIoU Acc Cons ConsW

Res 128× 256
VSSNet No Cons 31.8 81.6 94.0 7.9

VSSNet Cons 31.9 82.5 96.0 7.8

Res 512× 1024
VSSNet No Cons 34.2 88.4 95.2 6.4

VSSNet Cons 29.1 87.6 98.2 8.3

State Transition
VSSNet Stateless 33.7 86.8 92.5 6.5

VSSNet Stateful 34.2 88.4 95.2 6.4

Table 5.1: VSSNet Results. The first two experiments compare a loss function with and without
consistency term. We observe that training with consistency loss improves segmentation consis-
tency on the validation set. The third experiment compares stateless with stateful LSTM training.
Stateful training outperforms stateless training in every metric. All results are reported at high
resolution.

Compared to the SSNet trained with sequence data, the VSSNet improves single frame

accuracy and consistency. A qualitative comparison is shown in Figure 5.2. We found that

extending the SSNet with a LSTM cell improves semantic segmentation results. More

specifically, experiments with high input resolution give better mIoU. Furthermore, state-

ful training outperforms stateless training and the addition of a inconsistency error to the

cross entropy loss function guides the network towards frame-to-frame consistent predic-

tion. Having observed that the methods of this thesis can be applied successfully on the

simple SSNet architecture, the next section shows results of implementing the methods on

the state-of-the-art ESPNet architecture.

5.4 Semantic Segmentation with ESPNet

After validating the methods on the VSSNet, the ESPNet architecture is implemented as

well. In contrast to the results reported in [66], no data augmentations i.e., horizontal

flipping and scaling to different resolutions are used. Furthermore, the training data

is not transformed during preprocessing to have zero mean and unit variance, but only

normalized to the range [0,1].

Firstly, performance on single frame data is compared. Then, sequence data is used to

inspect the impact of the inaccurate DeepLab oracle. Finally, a consistency loss is added

to train the single frame network for consistency without a LSTM layer. The experiments

are conducted on the resolutions 256× 512 and 512× 1024.

First of all, the ESPNet single frame training results in 46.1 % mIoU compared to

27.9 % mIoU for the SSNet at high resolution. When validating on low resolution, the

ESPNet still achieves 36.6 % mIoU. The results show that the network is designed for

512× 1024 dimensional validation images. Because no augmentations are used, the mIoU

Reference:

 ()

5.4. Semantic Segmentation with ESPNet 63

Input SSNet VSSNet Groundtruth

t=
1

t=
2

t=
3

t=
4

t=
5

F
ig

u
re

5
.2

:
C

on
si

st
en

cy
V

S
S

N
et

.
C

om
p

ar
is

on
of

S
S

N
et

(s
ec

o
n
d

ro
w

),
V

S
S

N
et

(t
h

ir
d

ro
w

)
a
n

d
G

ro
u

n
d

tr
u

th
(b

o
tt

o
m

)
w

it
h

fi
ve

co
n
se

cu
ti

ve
fr

am
es

.
T

h
e

V
S

S
N

et
gi

ve
s

m
or

e
ac

cu
ra

te
an

d
co

n
si

st
en

t
re

su
lt

s
co

m
p

a
re

d
to

th
e

S
S

N
et

.
T

h
is

ca
n

b
e

se
en

es
p

ec
ia

ll
y

a
t

th
e

b
o
tt

o
m

(r
o
a
d

)
an

d
at

th
e

ri
gh

t
(b

u
il

d
in

g)
in

si
d

e
th

e
sc

en
e.

64 Chapter 5. Experiments

Experiment Training mIoU Acc Cons ConsW

Res 256× 512
ESPNet SF Data 36.6 86.2 - -

ESPNet SEQ Data 47.5 90.5 - -

Res 512× 1024

ESPNet SF Data 46.1 90.4 - -

ESPNet SF + Augm Data 56.3* - - -

ESPNet SEQ Data 57.4 92.8 - -

Cons Training
ESPNet No Cons 56.5 92.7 97.6 2.6

ESPNet Cons 50.5 91.6 98.2 3.4

Table 5.2: ESPNet Results. The first two experiments show that results are more accurate when
using sequence training data, although the sequence ground-truth is obtained by the not perfectly
accurate DeepLab prediction (* from [66]). Furthermore, the ESPNet performs better on high
(512× 1024) resolution, rather than on low (256× 512) resolution. The third experiment indicates
that the ESPNet can be trained to achieve higher (98.2 vs 97.6 %) frame-to-frame consistency,
however this comes in together with a mIoU loss (50.5 vs 56.5 %).

of 56.3 % reported in [66] is not reached. However, this changes when adding sequence

data.

5.4.1 Sequence Training

We use sequence data to train the single frame ESPNet without any further modification

of the architecture. An overview of the experiments conduced is shown in Table 5.2.

Res 256 × 512 and Res 512 × 1024 Although, ground-truth oracle segmentation is

not perfectly accurate, the mIoU increases to 57.4 % with 93.2 % in accuracy. It outper-

forms single frame results achieved with data augmentation by 1.1 %. At low resolution

results improve to 47.5 % mIoU and 90.5 % Acc. It is concluded that the additional training

frames improve prediction accuracy although the provided ground-truth is not completely

accurate.

Cons Training To achieve consistent segmentation over all frames in every scene, the

inconsistency error is enabled. This experiment was performed on high resolution using

the squared difference error on correctly predicted pixels with λincons = 20. Consistency

increases from 97.6 % to 98.2 % while mIoU drops from 56.5 % to 50.5 %. We found that

more consistency can only be reached by losing accuracy at smaller regions with the single

frame architecture.

Reference:

 ()

Reference:

 ()

5.5. ESPNet with Temporal Information Flow 65

In summary, the ESPNet architecture outperforms the suggested SSNet architecture

significantly, although the number of parameters is similar. When training with all 30

frames per scene, the results improve compared to the single frame training, despite the

inaccurate ground-truth generated. It is possible to optimize the ESPNet for frame-to-

frame consistent prediction, however details about smaller semantic regions get lost.

5.5 ESPNet with Temporal Information Flow

The methods explained in Chapter 4 are also applied to the ESPNet to allow the features to

be propagated over multiple time steps in a scene. Firstly, we test ESPNet T architecture,

where a final layer is added to ESPNet. This layer performs a convolution over the

last t time steps which are concatenated in the channel dimension. Secondly, we also

test ESPNet L architectures which we create by adding a ConvLSTM layer at different

positions. Furthermore, different configurations of the ConvLSTM layer are compared.

Additionally, we visualize the parameters of the LSTM cell and how the features evolve

in cell and hidden state over time.

Compared to ESPNet training which we perform in a single stage, the training with

temporal flow takes three stages. At first stage, the ESPNet is trained to only optimize

accuracy on semantic segmentation. At second stage, the architecture is modified to

include temporal information flow. Only the new parameters are trained, while the rest of

the parameters stay untouched. At third stage, all parameters are fine-tuned to optimize

prediction for both semantic accuracy and consistency. The benefits of this procedure are

presented in Section 5.5.2.

5.5.1 ConvTime Layer

We add the ConvTime layers presented in Section 4.4 after the last layer of ESPNet. We

call the resulting architectures ESPNet T and ESPNet T2. ESPNet T outperforms ESP-

Net T2 significantly. On 512× 1024 resolution the ESPNet T achieves 50.3 % mIoU while

ESPNet T2 only reaches 38 % mIoU. However, both networks achieve 98.3 % consistency.

The mIoU can be improved to 52.1 % by increasing the filter size from 3 × 3 to 7 × 7.

Although the ConvTime layer increases prediction consistency, the ConvLSTM layer in-

cluded in the ESPNet L1a architecture produces even better results. A comparison is

given in Table 5.3.

5.5.2 ConvLSTM Layer

Various experiments are conducted on ConvLSTM settings. We first focus on different

training settings, then parameters withing the ConvLSTM layer are adjusted and finally,

different inconsistency loss functions are compared. The results are grouped into cate-

gories. A comparison across categories is not possible, because the training setting varies

66 Chapter 5. Experiments

Experiment Training mIoU Acc Cons ConsW

ESPNet T 5× 5 (+45K)
ESPNet T Stage 2 45.4 89.6 97.8 3.9

ESPNet T Stage 3 49.2 90.9 97.8 3.7

ESPNet L1a 5× 5 (+72K)
ESPNet L1a Stage 2 47.1 90.6 98.3 3.5

ESPNet L1a Stage 3 48.8 91.0 98.4 3.3

ESPNet L1a 3× 3 (+26K)
ESPNet L1a Stage 2 45.9 90.5 98.2 3.5

ESPNet L1a Stage 3 48.7 91.0 98.4 3.2

Table 5.3: ConvTime vs ConvLSTM. This table compares the ConvTime layer with the ConvL-
STM layer on the ESPNet architecture. The first experiment shows results of ESPNet T training,
while the second and the third experiments show scores of the ESPNet L1a architecture with fil-
ter sizes 5 × 5 and 3 × 3. The number in parenthesis indicates the additional parameters needed
for this layer. Although the ESPNet T achieves a slightly better mIoU score, overall consistency
performance is significantly better with the ConvLSTM layer.

for different categories. All quantitative results of the ConvLSTM experiments are sum-

marized in Table 5.4. Additionally, the qualitative improvements of using sequence data

and ConvLSTM architecture with consistency loss are shown in Figure 5.4

Training Stages Firstly, training with 3 stages is compared to 2 stage training. The

difference is that 3 stage training has the additional stage 2 in which only the ConvLSTM

layer is optimized and all other layers are frozen. 3 stage training results in 49.6 % mIoU

while 2 stage training only achieves 47.1 % mIoU. It also outperforms in the other metrics.

Both training methods are compared on the ESPNet L1a architecture with high resolution

input images.

Data Size Secondly, we reduce the number of scenes in the training data set from 2,975

to 1,000. This results in a performance drop from 49.6 to 29.2 % mIoU (-20.4 p.p.) on the

ESPNet L1a. On the single frame ESPNet the performance only decreases by 15.5 p.p.

(56.5 to 41.0). It is concluded that the LSTM is more prone to over-fitting. Therefore,

low resolution is used to save training time instead of a smaller data set.

Sequence Length Thirdly, the sequence length determines how many consecutive time

steps are given as an input in a single gradient descent step. Sequence length 5 works better

than sequence length 2 in terms of mIoU (45.2 vs 44.5). When comparing consistency,

the gap is even larger (97.2 vs 96.6). This suggests that a large sequence size is especially

important for the LSTM to learn consistency over multiple input frames. Both experiments

are trained on high resolution using a 3× 3 ConvLSTM filter.

5.5. ESPNet with Temporal Information Flow 67

ConvLSTM Init Next, the initialization of cell and hidden LSTM state is also com-

pared. The zero-initialization reaches 49.1 % mIoU and 98.3 % consistency, whereas a

learned initialization reaches 49.3 % mIoU and 98.4 % consistency. Most of the other ex-

periments we perform use learned initial states, because it gives slightly better results.

Both results are produced with LSTM only training and squared difference consistency

loss.

Layer Types Additionally, the best ConvLSTM layer is determined by comparing the

three methods suggested in Section 4.3. The convolution over all input channels performs

best in every metric with 46.5 % mIoU. The second method achieves 45.2 % mIoU which is

slightly worse, however it needs less parameters. The third method reaches 42.5 % which is

significantly lower than the other two methods. Method 2 can be implemented efficiently

in PyTorch by using a convolution with the groups parameter. This makes it very useful

especially for the ESPNet L1a architecture.

LSTM Position 5 × 5 and LSTM Position Eq Params Another question which

needs to be answered is where to position the ConvLSTM layer in the ESPNet. Four dif-

ferent possibilities are introduced in Section 4.3.2. At the comparison with full resolution,

2 stage training and 5 × 5 filter size, ESPNet L1b performs best with 53.0 % mIoU. The

other architectures are less accurate with 50.1, 49.6 and 47.1 % mIoU for ESPNet L1c,

ESPNet L1d and ESPNet L1a. Similarly, when testing on different filter sizes for each ar-

chitecture to equalize the number of parameters, ESPNet L1b produces the best results.

These results suggest, that it is best to include the ConvLSTM layer at a high feature

level with low spatial dimensions. At this place, the LSTM is able to achieve highest

consistency and also best accuracy.

Inconsistency Loss Furthermore, the inconsistency term in the objective function can

also be modified. When considering a different error function, results are quite similar.

The `1-norm and the `2-norm reach about 49 % mIoU and 98.5 % consistency. Figure 5.3

compares the pixel loss for the different loss functions:

• Subfigure (1) shows all pixels which should be labeled the same in both images, but

are predicted differently.

• Subfigure (2) penalizes differences on all pixels which are predicted with a certainty

larger than 20 % (Threshold 20) in both images by the absolute function over all

classes. The pixel error is computed by the sum over all classes.

• Subfigure (3) computes the absolute difference on inconsistent pixels which where

labeled correctly in one image (Equation (4.21)).

68 Chapter 5. Experiments

• Subfigure (4) uses the absolute function applied on the difference of all class proba-

bilities of pixels which should be consistent. The pixel loss is given by the sum over

all classes (Equation (4.17)).

• Subfigure (5) computes the squared difference on inconsistent pixels which where

labeled correctly in one image (Equation (4.21)).

• Subfigure (6) uses the squared difference of all class probabilities of pixels which

should be consistent. The pixel loss is given by the sum over all classes (Equa-

tion (4.17)).

For most of our experiments we use the Squared Difference True loss function, because

it only penalizes pixels which are inconsistent in the prediction. This inconsistency loss

function also assigns a higher error to outliers compared to the absolute function.

Inconsistency Lambda Finally, we modify the hyper-parameter λincons to force more

or less consistent results. Setting λincons = 0 results in 49.0 % mIoU but only 98.0 %

Cons. Choosing λincons = {10, 20} slightly decreases mIoU but increases consistency

to 98.4 %. A higher parameter λincons does improve consistency only slightly, but mIoU

degrades rapidly. We observe that λincons = [10, 20] produces best results for this domain.

Best Results We present the best results in the last line of Table 5.7. The corresponding

qualitative results are shown in the last row of Figure 5.4. We achieve 57.9 % mIoU, 93.0 %

Acc, 98.7 % Cons and 2.7 % ConsW computed at full Cityscapes resolution (2048× 1024).

To reach this accuracy, we train the ESPNet L1b at high resolution (1024× 512) without

data augmentation. The training is performed in three stages. In the first stage, we

train the ESPNet with video data. In the second stage we add the ConvLSTM layer and

train only this layer. In the final stage we train the parameters of the whole network. The

squared difference consistency loss depicted in Equation (4.21) is enabled with λincons = 20

in stages two and three. We stop the training after about two million image batches.

5.5.3 Network Visualization

We want to get an insight into the learning process to get a better overall understanding.

Although this cannot be done easily on deep neural networks, there are possibilities to

visualize learned filters and how states change over time. In addition, the loss function

computation can be observed and multiple error functions can be compared. The most

interesting visualizations on the ESPNet are shown in this section.

First, we visualize the LSTM of the ESPNet L1a architecture. This architecture is

chosen because the ConvLSTM layer operates on the last layer which creates the output

probability volume. Therefore, results can be interpreted easily, since the 19 output chan-

nels can be directly mapped to the corresponding semantic classes. The propagation of

cell and hidden states at an example scene is shown in Figure 5.5.

5.5. ESPNet with Temporal Information Flow 69
t=

1

Ground-Truth Prediction Cross Entropy Loss

t=
2

(1) Inconsistent Pixels (2) Inconsistent Pixels Th 20

(3) Absolute Difference True (4) Absolute Difference Sum

(5) Squared Difference True (6) Squared Difference Sum

Figure 5.3: Inconsistency Loss Functions. In the upper part, ground-truth (left), prediction
(center) and cross entropy loss (right) of two consecutive images is shown. The lower part compares
different error functions which penalize the inconsistencies between predictions of the two time steps
on top.

70 Chapter 5. Experiments

InputGroundtruthESPNet SingleESPNet SeqESPNet L1b

t=
1

t=
2

t=
3

t=
4

t=
5

F
ig

u
re

5
.4

:
C

o
n

sisten
cy

E
S

P
N

et.
A

co
m

p
a
riso

n
b

etw
een

in
p

u
t

d
a
ta

,
D

eep
L

a
b

g
ro

u
n

d
-tru

th
,

sin
gle

fram
e

train
in

g,
seq

u
en

ce
train

in
g

an
d

L
S

T
M

tra
in

in
g

on
th

e
E

S
P

N
et

(to
p

to
b

o
ttom

).
T

h
e

h
o
rizo

n
ta

l
a
x
is

rep
resen

t
th

e
tim

e
step

s.
A

reas
w

ith
in

accu
rate

p
red

iction
s

are
h

igh
ligh

ted
b
y

o
ra

n
g
e

b
ox

es.
T

h
e

E
S

P
N

et
w

ith
sin

gle
fram

e
tra

in
in

g
sh

ow
s

in
co

n
sisten

cies
a
t

th
e

rig
h
t,

left
an

d
on

th
e

road
segm

en
tation

.
T

rain
in

g
w

ith
m

u
ltip

le
fram

es
im

p
rov

es
overall

resu
lts,

b
u

t
still

sh
ow

n
in

co
n

sisten
cies

esp
ecia

lly
in

th
e

righ
t

p
art

of
th

e
im

age.
T

h
e

E
S

P
N

e
L

1b
p

ro
d

u
ces

th
e

m
o
st

accu
ra

te
an

d
con

sisten
t

resu
lts.

5.5. ESPNet with Temporal Information Flow 71

Category Experiment mIoU Acc Cons ConsW

T
ra

in
in

g
S

et
ti

n
g Training Stages

ESPNet L1a 2 Stages 47.1 89.2 97.8 5.6

ESPNet L1a 3 Stages 49.6 90.8 98.5 4.4

Data Size
ESPNet L1a Size 1,000 29.2 79.2 94.7 13.7

ESPNet L1a Size 2,975 49.6 90.8 98.5 4.4

Sequence Length
ESPNet L1a Seq 2 44.5 87.9 96.6 6.3

ESPNet L1a Seq 5 45.2 89 97.2 5.5

L
S

T
M

C
el

l ConvLSTM Init
ESPNet L1a Zero 49.1 90.9 98.3 3.5

ESPNet L1a Learn 49.3 91.0 98.4 3.4

Layer Types

ESPNet L1a Type 1 46.5 89.4 97.6 5.4

ESPNet L1a Type 2 45.2 89.0 97.2 5.5

ESPNet L1a Type 3 42.5 87.7 96.9 6.5

L
S

T
M

P
os

it
io

n
in

E
S

P
N

et

LSTM Position 5× 5

ESPNet L1a 47.1 89.2 97.8 5.6

ESPNet L1b 53.0 91.3 98.5 4.0

ESPNet L1c 50.1 91.1 98.1 3.9

ESPNet L1d 49.6 91.1 98.1 4.0

LSTM Position Eq Params

ESPNet L1a 7× 7 50.3 91.4 98.5 3.1

ESPNet L1b 3× 3 52.0 91.5 98.7 3.2

ESPNet L1c 5× 5 49.9 91.4 98.2 3.0

ESPNet L1d 9× 9 50.1 91.5 98.3 2.9

L
o
ss

F
u

n
ct

io
n

Inconsistency Loss

Sq Diff True 48.8 90.9 98.4 3.5

Abs Diff True 48.6 90.9 98.6 3.5

Abs Diff Thresh 20 % 47.9 90.7 98.4 3.6

Inconsistency Lambda

λincons = 0 49.0 90.9 98.0 3.4

λincons = 10 48.8 90.9 98.4 3.5

λincons = 20 48.5 90.9 98.4 3.6

λincons = 100 46.3 90.4 98.6 3.7

λincons = 1, 000 31.1 87.1 98.6 5.9

Best Results ESPNet L1b 57.9 93.0 98.7 2.7

Table 5.4: ConvLSTM Results. Nine categories with different ESPNet L training configuration
tests are shown in this table. The first three focus on the overall training setting. Categories 4 and
5 focus on how to configure the ConvLSTM layer, while categories 6 and 7 (ConvLSTM Position)
show the results of four ConvLSTM layer positions within the ESPNet. The last two categories
test variations of the inconsistency loss function. The best results of each category are highlighted
in bold. The last row shows the best results we are able to achieve by combining the insights from
the experiments.

72 Chapter 5. Experiments
C

el
l

S
ta

te
H

id
d

en
S

ta
te

Init t=1 t=2 t=3 t=4

C
el

l
S

ta
te

H
id

d
en

S
ta

te

t=5 t=6 t=7 t=8 t=9

Figure 5.5: LSTM State Propagation. The first nine ConvLSTM states of the ESPNet L1a
architecture on a validation scene are shown. At the top left, the learned initial cell and hidden
states are depicted. Already after the first time step in the scene, both states represent the output
of that time step. The prediction of cell and hidden states behave similar throughout the scene.
Few minor differences which can be seen only at the beginning of the scene are highlighted by
orange boxes.

Different loss functions which penalize errors by the cross entropy function, `1-norm

or `2-norm are compared in Figure 5.3. We visualize them to outline the differences and

to decide on the most suitable inconsistency loss. The effect of dilation on the difference

image of the groundtruth between two consecutive time steps is shown in Figure 5.6:

Subfigure (1) shows one iterations of a dilation on the ground-truth difference image

using the four pixel neighborhood. (2) Inconsistent pixels after removing the dilated

ground-truth pixels are marked in yellow (Consistency 90.1 %).

Subfigure (3) shows one iterations of a dilation on the ground-truth difference image

using the eight pixel neighborhood. (4) Inconsistent pixels after removing the dilated

ground-truth pixels are marked in yellow (Consistency 90.3 %).

Subfigure (5) shows two iterations of a dilation on the ground-truth difference im-

age using the four pixel neighborhood. (6) Inconsistent pixels after removing the dilated

ground-truth pixels are marked in yellow (Consistency 90.8 %). This dilation gives the

best results, because classes with imprecise edges e.g. trees are not categorized as incon-

sistencies.

We need to compute the difference image between two consecutive images of the

5.6. Adding Synthetic Data 73

Map Names Town01 Town02 Town03 Town04 Town05

Working Spawn Points 153 83 113 115 145

Master Spawn Points 130 70 100 100 120

Vehicles in Map 150 80 300 300 300

Weather IDs 1, 2, 3, 4, 7, 8, 9, 10, 11

Time After Spawn [3, 10] sec

Table 5.5: Carla Generation Settings. The settings used to generate synthetic data are summa-
rized in this table. The first four towns are used for training whereas Town05 is used for validation.
Altogether 4680 scenes are created with this settings.

groundtruth to find pixels which should not be consistent. The difference image shows the

semantically changing pixels in the scene between two time steps. It is important to de-

termine which pixels should be affected by the inconsistency loss. Pixel coordinates which

alter semantics in the groundtruth are never subject to the inconsistency loss function.

The idea of the dilation is to compensate possibly inaccurate groundtruth generated by

DeepLab (Section 4.2.1).

5.6 Adding Synthetic Data

One disadvantage of the previously conducted supervised experiments is that they

all rely on the ground-truth created by the DeepLab model. Although results of

this model are fairly accurate and state-of-art on the Cityscapes high-score list, the

inaccuracies occur often at edges of objects. This fact makes it more difficult for a

ConvLSTM to learn motion boundaries. In order to tackle this problem, proportions

of a synthetic data set created by the Carla simulator are added to the training data

set. Since this data has perfectly accurate ground-truth it should allow the Con-

vLSTM to learn the exact motion boundaries and lead towards more consistent prediction.

The Carla server is running on the GPU while the Python client connects, defines

the settings and captures data. An overview about which settings are used is shown in

Table 5.5. Altogether five different maps are used, where the last one (Town05) generates

test data. Within each map about 180 predefined spawn points exist, where a vehicle can

start its route. Note that not all spawn points can be used, because no route is defined

for some of them. Therefore, a list is generated which only contains the working spawn

points. The resulting working spawn points are used to create traffic on the roads. From

80 up to 300 cars are spawned depending on the size of the map to create traffic on the

otherwise empty map.

After traffic is created by spawning vehicles, the server is set to synchronous mode

to pause simulation and only continue on request by the Python client. Now the master

74 Chapter 5. Experiments
G

ro
u

n
d

-T
ru

th

t=1 t=4 Difference (Yellow)

P
re

d
ic

ti
o
n

(1
)

D
iff

D
il

4
-N

H
1

It
er

(2
)

In
co

n
s

D
il

4
-N

H
1

It
er

(3
)

D
iff

D
il

8
-N

H
1

It
er

(4
)

In
co

n
s

D
il

8
-N

H
1

It
er

(5
)

D
iff

D
il

4
-N

H
2

It
er

(6
)

In
co

n
s

D
il

4
-N

H
2

It
er

Figure 5.6: Dilation on Motion. The upper part shows semantic ground-truth and prediction of
two images from the same scene, but at two different time steps. Additionally, the pixels where
the semantic label has changed over time are shown (right). When subtracting the ground-truth
difference from the prediction difference, the number of inconsistent pixels can be computed. In this
example, 89.1 % are predicted consistent after removing the ground-truth differences throughout
the two time steps. The lower part shows how the ground-truth difference image can be modified by
the morphological operation dilation to overcome inaccurate edge segmentation by the prediction
oracle.

5.6. Adding Synthetic Data 75

Data Set Data Ratio mIoU Acc Cons ConsW

Cityscapes : Carla Data

100:0 48.5 90.9 98.4 3.6

90:10 48.5 91.0 98.5 3.3

80:20 47.8 90.6 98.4 3.6

50:50 45.1 89.9 98.2 3.9

Table 5.6: Synthetic Data Results. This table outlines the impact of gradually adding more data
samples generated from the Carla simulator. The number of data samples from the Cityscapes
is kept constant at 2,975 scenes. Using about 10 % synthetic data slightly improves the results.
When using more than 20 % of synthetic data, the performance on the Cityscapes validation set
declines significantly.

vehicle which has mounted a camera to generate data is spawned on one of the free spawn

points. The master vehicle drives for a random time span from 3 to 10 seconds on the map

before recording a scene. A scene consists of 30 frames recorded at 17 FPS. Both RGB data

and semantic segmented data is stored to the disk. After the scene recording is finished,

the master vehicle is removed from the map and re-spawns at the next free position. This

process is repeated until the number of total master spawn points is reached.

The procedure of recording scenes is repeated until most spawn points of the map are

covered. Once finished, the map is reset and the experiment is repeated using a different

weather setting. Altogether nine weather settings are used. Finally, the procedure is

applied to all maps, which allows 4,380 scenes and 140,400 RGB images to be created.

Since the performance of the model is evaluated on the Cityscapes data set, the

synthetically created data is only added in some fractions to the Cityscapes training set.

Otherwise the domain gap would be too large because not all Cityscapes classes can be

generated by the Carla simulator. Results show that about 10 % simulation data added

can have a positive impact on the validation scores. The accuracy increase slightly from

90.9 % to 91.0 % and the consistency increases from from 98.4 % to 98.5 % when adding

325 randomly selected Carla scenes. However, adding more synthetic scenes lowers the

mIoU score dramatically. Detailed results are shown in Table 5.6. It is concluded that

the addition of a few synthetic scenes can improve prediction scores by a small amount.

To summarize this chapter, our experiments are executed on two Nvidia consumer

GPUs using CUDA and the PyTorch deep learning framework. In the simple setting, we

compute semantic segmentation using the SSNet architecture. This simple architecture

classifies about 80 % of all pixels correctly. After we added a ConvLSTM layer to the SS-

Net and used video data for training results improve further. The suggested inconsistency

loss function allow the VSSNet architecture to perform frame-to-frame consistent seman-

tic segmentation. This ensures that the suggested methods work on the small example

architecture.

76 Chapter 5. Experiments

Training Architecture mIoU Acc Cons ConsW

Single Data
SSNet 27.9 80.3 - -

ESPNet 44.0 89.4 - -

Seq Data
SSNet 37.5 87.1 93.5 6.1

ESPNet 56.5 92.7 97.6 2.6

Consistency
ESPNet consLoss 50.5 91.6 98.2 3.4

ESPNet L1b 57.9 93.0 98.7 2.7

Table 5.7: Path towards Consistency. The ESPNet architecture delivers much better (16.1 p.p.
and 19 p.p.) results than SSNet, for both single data and sequence data. Single frame results do
not contain consistency scores because they are evaluated on the single frame validation set. By
using sequence data mIoU and accuracy already increase for the SSNet by 9.6 p.p and ESPNet by
12.5 p.p. Training the ESPNet with consistency loss improves consistency, but lowers mIoU. By
adding a LSTM cell (ESPNet L1b), we are able to increase accuracy and consistency.

In the next step, we test the methods on the state-of-the-art ESPNet architecture.

A final quantitative comparison of these experiments is shown in Table 5.7. By training

the ESPNet with video data, the officially reported performance is improved from 56.3 %

to 57.4 % without any additional data augmentations. The extension of the ESPNet

architecture to the ESPNet L1b improves mIoU further to 57.9 % and also delivers high

consistency over time at 98.7 %. The last line of Table 5.7 represents the best results

we are able to achieve: 57.9 % mIoU, 93.0 % Acc, 98.7 % Cons and 2.7 % ConsW. The

corresponding qualitative results are shown in the last row of Figure 5.4.

Visualizing intermediate network steps gives us insights into the prediction process

and enhances understanding of the training process. The expansion of the training data

set only improves results by less than one percent. Chapter 6 contains a final conclusion

about the findings of this chapter.

6
Conclusion

In this thesis we aimed for physically plausible video segmentation by developing methods

for frame-to-frame consistent semantic segmentation. One disadvantage of many state-of-

the-art semantic segmentation algorithms is that they only process single images and do

not use video information. We utilized this additional multiple frame information which

is available in many applications to improve prediction results. In this work we mainly

focused on the domain of street scenes because it is very important to have a consistent

view of what is happening in traffic situations.

We used the method of convolutional neural networks in combination with long

short-term memory cells to tackle the problem of frame-to-frame consistent semantic

segmentation. The main task of the CNN architecture is to provide good semantic

prediction whereas the LSTM should memorize the prediction of previous frames.

We used the Cityscapes sequence dataset to train this architecture on street scenes.

Additionally, we created synthetic data using the Carla simulator. We extended the

cross-entropy loss which is usually used for classification problems with an inconsistency

error term to guide the model towards consistent prediction.

Our results indicate that the use of multiple frames per scene indeed increases pre-

diction accuracy, even when the validation set only consists of single frame images. By

adjusting the architecture to allow for temporal information flow with ConvLSTM or Con-

vTime layers, we are able to improve prediction accuracy further. These layers increase

consistency over time while maintaining segmentation details indicated by the mIoU score.

Furthermore, the inconsistency error is an important tool which improves consistency

quantitatively and qualitatively. It works on single frame networks as well as multiple

frame architectures. The addition of synthetic data generated with the Carla simulator

does only improve results slightly, when considering the Cityscapes validation set. Overall,

the results show that the idea of using multiple frame information together with recurrent

neural networks and an inconsistency loss function to enforce physically plausible predic-

tions, works as indented. With this technique we are able to deliver consistent and accurate

77

78 Chapter 6. Conclusion

predictions with thin CNN architectures. We are able to outperform the state-of-the-art

ESPNet video predictions significantly.

6.1 Positives and Negatives

It is important to point out positive and negative aspects about the methods used in this

work. The positive aspects can be applied to other problems, whereas the negative ones

need to be improved in the future.

Positives:

• Adding video data already improves validation results by a great amount. Although

the video data is produced by DeepLab and therefore not perfectly accurate. Even

when validating on hand-labeled single frame data.

• Enabling the inconsistency loss term improves consistency such that it can be ob-

served immediately. It even works on single frame architectures.

• The ConvLSTM layer improves overall results even with a few number of parameters.

• The ConvTime layer improves results similar to the ConvLSTM layer.

• Methods proposed in this thesis can be transfered to different problems by adjusting

some parameters and retraining the model. Within computer vision it can be applied

to other deep learning architectures.

• The suggested methods work on the handcrafted SSNet and already deliver good

results.

• Experiments work on the SSNet as well on the already optimized state-of-the-art

ESPNet.

Negatives:

• Improvements through a ConvLSTM layer does also increase the number of param-

eters in the network. However, the total number of parameters is significantly lower

that in many other architectures [11, 30].

• The ConvLSTM visualization only gives little insight into the learning process. Es-

pecially, high level feature propagation is hard to analyze.

• Adding synthetic data by the Carla simulator without preprocessing did not improve

results significantly. Better outcomes might be achieved with in depth data analysis

and preprocessing.

6.2. Limitations 79

6.2 Limitations

Finally, we also point out limitations of the work in order to prevent misconceptions.

The produced results are only valid on the street scenes produced by Cityscapes. Other

domains might produce different results, although the methods should work similarly.

Since the methods use supervised learning, training and ground-truth data are needed to

predict semantics for other applications. For example, training with images taken on a

sunny day does not deliver good segmentation results on test images taken on a cloudy

day. Moreover, training the architecture for segmenting street scenes in New York City

into 19 classes does not give any semantical understanding about 10 important classes

when watching a tennis match.

When considering video data, it is important that the motion between consecutive

images is small in a sense that pixels do not move large distances. Otherwise the

ConvLSTM will not be able to determine the motion direction and accuracy will decrease.

The ConvLSTM produces good results on street scene data with 17 FPS. Similarly,

the resolution between training and test time should not differ significantly, although a

change in resolution is possible because the network architecture is fully convolution.

Changing the image resolution by a factor larger than two also reduces prediction accuracy.

Some of the important lessons learned when applying the methods are as follows.

In order to get fast feedback on parameter changes it is important to keep to training

setting as simple as possible. Image resolution and network size should be small in order

to train for consistency in a video setting. Overnight convergence ensures that multiple

experiments can be run. When considering the ESPNet architectures, the ESPNet-C

architecture is most efficient for video experiments, because a decoder adds unnecessary

complexity.

In conclusion, the proposed methods delivered consistent and correct semantic image

segmentation and are able to outperform state-of-the-art algorithms. It would be inter-

esting to apply the techniques to different image understanding algorithms on various

domains. Some ideas for future experiments and improvements are explained in Future

Work (Chapter 7).

7
Future Work

At the end of this thesis we would like to share some ideas about what could be done in

the future in the field of frame-to-frame consistent semantic segmentation. One idea is

to provide additional features (e.g. optical flow) as LSTM input to enforce consistency.

Additional features (e.g. disparity information or image gradients) can be processed by

the whole network architecture to improve semantic segmentation accuracy. Furthermore,

RGB input data can be preprocessed and augmented to create additional information.

Popular examples of augmentation are horizontal flipping and scale to different resolution.

Additionally, the overall network can be further tuned by adjusting the regularization

hyper-parameters. Precomputed optical flow information can be used to wrap consecutive

frames. The ConvLSTM would take two to the current time step warped frames as an

input. After the warping the frames should be the same except for occlusions. This method

would allow to maintain consistency at frames with large motion. It would be interesting

to see how the LSTM performs on very long scenes. Other research areas indicate that

the LSTM is capable of remembering information over hundreds of time steps.

An improvement of data preprocessing might allow to combine the synthetic Carla

data with real-world Cityscapes data more effectively. In addition to preprocessing, the

cross entropy loss function can be modified to equally penalize all classes independent of

their size. This would avoid inaccuracies of classes which are not present in the Carla data

set. It would also weight smaller classes equally, which could improve the mIoU metric.

Additionally, other real-world data sets could be used [24, 68] to enforce generalization.

Moreover, methods could be tested on different video domains with other semantic classes.

Different network architectures [85, 88] can be modified to allow for temporal feature

propagation. This would indicate how well the ConvLSTM works on various architectures.

Within those models the function of the ConvLSTM layer can also by replaced by a GRU,

3D-Convolution or by a depth-wise separable convolution.

The concept of neural networks could be replaced by more traditional methods such

as graph cut algorithm, 3D conditional random field, Markov model or Kalman filter.

These methods can be used to predict semantics and ensure that the predictions remain

81

82 Chapter 7. Future Work

consistent over time.

To summarize, the methods suggested for future research involve adding additional

input data, testing on different domains and switching to other algorithms. Although the

methods we suggested in this thesis already deliver good results, it would be interesting

to investigate if the explained ideas can improve results further.

A
List of Acronyms

List of Acronyms

Acc Accuracy

ANN Artificial Neural Network

API Application Programming Interface

Cons Consistency

ConsW Consistency Wrong

ConvLSTM Convolutional Long Short-Term Memory

CPU Central Processing Unit

ESP Efficient Spatial Pyramid

FPS Frames Per Second

GAN Generative Adversarial Network

GMM Gaussian Mixture Model

GPU Graphics Processing Unit

LSTM Long Short-Term Memory

MADD Multiply-Adds

mIoU mean Intersection over Union

NN Neural Network

p.p. percentage points

ReLU Rectified Linear Unit

RGB Red Green Blue

RNN Recurrent Neural Network

Seq Sequence

SGD Stochastic Gradient Descent

83

BIBLIOGRAPHY 85

Bibliography

[1] (2018). Road safety status. https://www.who.int/violence_injury_prevention/

road_safety_status/2018/en/. (page 2)

[2] (2019). Youtube statistics. https://www.omnicoreagency.com/

youtube-statistics/. (page 3)

[3] Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information Science

and Statistics). Springer-Verlag, Berlin, Heidelberg. (page 7)

[4] Brostow, G. J., Fauqueur, J., and Cipolla, R. (2009). Semantic object classes in

video: A high-definition ground truth database. Pattern Recognition Letters, 30:88–97.

(page 11, 40)

[5] Burges, C. J. C. (1998). A Tutorial on Support Vector Machines for Pattern Recogni-

tion. Data Mining and Knowledge Discovery, 2(2):121–167. (page 7)

[6] Calonder, M., Lepetit, V., Strecha, C., and Fua, P. (2010). BRIEF: Binary Robust

Independent Elementary Features. In Daniilidis, K., Maragos, P., and Paragios, N.,

editors, Computer Vision – ECCV 2010, pages 778–792, Berlin, Heidelberg. Springer

Berlin Heidelberg. (page 32)

[7] Chen, A. Y. C. and Corso, J. J. (2011). Temporally consistent multi-class video-

object segmentation with the video graph-shifts algorithm. 2011 IEEE Workshop on

Applications of Computer Vision (WACV), pages 614–621. (page 33)

[8] Chen, J. and Tang, C.-K. (2007). Spatio-temporal markov random field for video

denoising. (page 33)

[9] Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., and Adam, H. (2018). Encoder-

decoder with atrous separable convolution for semantic image segmentation. In Ferrari,

V., Hebert, M., Sminchisescu, C., and Weiss, Y., editors, Computer Vision – ECCV

2018, pages 833–851, Cham. Springer International Publishing. (page 39, 46, 52)

[10] Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,

H., and Bengio, Y. (2014). Learning phrase representations using RNN encoder–decoder

for statistical machine translation. In Proceedings of the 2014 Conference on Empirical

Methods in Natural Language Processing (EMNLP), pages 1724–1734, Doha, Qatar.

Association for Computational Linguistics. (page 37)

[11] Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions.

2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages

1800–1807. (page 24, 31, 46, 78)

https://www.who.int/violence_injury_prevention/road_safety_status/2018/en/
https://www.who.int/violence_injury_prevention/road_safety_status/2018/en/
https://www.omnicoreagency.com/youtube-statistics/
https://www.omnicoreagency.com/youtube-statistics/

86

[12] Chung, J., Gülcehre, C., Cho, K., and Bengio, Y. (2014). Empirical evaluation of

gated recurrent neural networks on sequence modeling. CoRR, abs/1412.3555. (page 37,

38)

[13] Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke,

U., Roth, S., and Schiele, B. (2016). The cityscapes dataset for semantic urban scene

understanding. In Proc. of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). (page 4, 11, 31, 39, 46)

[14] Criminisi, A., Cross, G., Blake, A., and Kolmogorov, V. (2006). Bilayer segmentation

of live video. In 2006 IEEE Computer Society Conference on Computer Vision and

Pattern Recognition (CVPR’06), volume 1, pages 53–60. (page 33)

[15] Dhanachandra, N., Manglem, K., and Chanu, Y. J. (2015). Image Segmentation

Using K-means Clustering Algorithm and Subtractive Clustering Algorithm. Procedia

Computer Science, 54:764–771. (page 10)

[16] Donahue, J., Anne Hendricks, L., Guadarrama, S., Rohrbach, M., Venugopalan, S.,

Saenko, K., and Darrell, T. (2015). Long-term recurrent convolutional networks for

visual recognition and description. In The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR). (page 2)

[17] Donahue, J., Hendricks, L. A., Rohrbach, M., Venugopalan, S., Guadarrama, S.,

Saenko, K., and Darrell, T. (2017). Long-Term Recurrent Convolutional Networks

for Visual Recognition and Description. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 39(4):677–691. (page 38)

[18] Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., and Koltun, V. (2017). CARLA:

An open urban driving simulator. In Proceedings of the 1st Annual Conference on Robot

Learning, pages 1–16. (page 40, 47, 58)

[19] Doulamis, A. D., Doulamis, N. D., Ntalianis, K. S., and Kollias, S. D. (2003). An

efficient fully unsupervised video object segmentation scheme using an adaptive neural-

network classifier architecture. IEEE transactions on neural networks, 14 3:616–30.

(page 33)

[20] Drachman, D. A. (2005). Do we have brain to spare? Neurology, 64(12):2004–2005.

(page 13)

[21] Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for online

learning and stochastic optimization. Journal of Machine Learning Research, 12:2121–

2159. (page 18)

[22] Fayyaz, M., Saffar, M. H., Sabokrou, M., Fathy, M., and Klette, R. (2016). Stfcn:

Spatio-temporal fcn for semantic video segmentation. CoRR, abs/1608.05971. (page 33)

BIBLIOGRAPHY 87

[23] Galasso, F., Keuper, M., Brox, T., and Schiele, B. (2014). Spectral graph reduction

for efficient image and streaming video segmentation. In 2014 IEEE Conference on

Computer Vision and Pattern Recognition, pages 49–56. (page 33)

[24] Geiger, A., Lenz, P., and Urtasun, R. (2012). Are we ready for autonomous driv-

ing? the kitti vision benchmark suite. In Conference on Computer Vision and Pattern

Recognition (CVPR). (page 11, 31, 39, 81)

[25] Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,

Courville, A., and Bengio, Y. (2014). Generative adversarial nets. In Proceedings of the

27th International Conference on Neural Information Processing Systems - Volume 2,

NIPS’14, pages 2672–2680, Cambridge, MA, USA. MIT Press. (page 10)

[26] Goodfellow, I. J., Shlens, J., and Szegedy, C. (2015). Explaining and harnessing

adversarial examples. CoRR, abs/1412.6572. (page 31)

[27] Greff, K., Srivastava, R. K., Koutnik, J., Steunebrink, B. R., and Schmidhuber, J.

(2017). LSTM: A Search Space Odyssey. IEEE Transactions on Neural Networks and

Learning Systems, 28(10):2222–2232. (page 38)

[28] Harris, C. and Stephens, M. (1988). A combined corner and edge detector. In In

Proc. of Fourth Alvey Vision Conference, pages 147–151. (page 32)

[29] Hartigan, J. A. and Wong, M. A. (1979). Algorithm as 136: A k-means cluster-

ing algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics),

28(1):100–108. (page 10)

[30] He, K., Zhang, X., Ren, S., and Sun, J. (2015a). Deep residual learning for image

recognition. CoRR, abs/1512.03385. (page 7, 78)

[31] He, K., Zhang, X., Ren, S., and Sun, J. (2015b). Delving deep into rectifiers: Sur-

passing human-level performance on imagenet classification. In Proceedings of the 2015

IEEE International Conference on Computer Vision (ICCV), ICCV 2015, pages 1026–

1034, Washington, DC, USA. IEEE Computer Society. (page 15, 59)

[32] He, Y., Chiu, W.-C., Keuper, M., and Fritz, M. (2016). Rgbd semantic segmentation

using spatio-temporal data-driven pooling. (page 33)

[33] Herculano-Houzel, S. (2009). The human brain in numbers: a linearly scaled-up

primate brain. Frontiers in Human Neuroscience, 3:31. (page 13)

[34] Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural Com-

put., 9(8):1735–1780. (page 34)

[35] Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., An-

dreetto, M., and Adam, H. (2017). Mobilenets: Efficient convolutional neural networks

for mobile vision applications. CoRR, abs/1704.04861. (page 24)

88

[36] Ingraham, C. (2016). How much of your life you are wasting on

your commute. https://www.washingtonpost.com/news/wonk/wp/2016/02/25/

how-much-of-your-life-youre-wasting-on-your-commute/. (page 2)

[37] Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network

training by reducing internal covariate shift. In Proceedings of the 32Nd International

Conference on International Conference on Machine Learning - Volume 37, ICML’15,

pages 448–456. JMLR.org. (page 26)

[38] Jain, A., Chatterjee, S., and Vidal, R. (2013). Coarse-to-fine semantic video segmen-

tation using supervoxel trees. In 2013 IEEE International Conference on Computer

Vision, pages 1865–1872. (page 33)

[39] Jarrett, K., Kavukcuoglu, K., Ranzato, M., and LeCun, Y. (2009). What is the

best multi-stage architecture for object recognition? In 2009 IEEE 12th International

Conference on Computer Vision, pages 2146–2153. (page 15)

[40] Joachims, T. (1998). Text categorization with support vector machines: Learning

with many relevant features. In Nédellec, C. and Rouveirol, C., editors, Machine Learn-

ing: ECML-98, pages 137–142, Berlin, Heidelberg. Springer Berlin Heidelberg. (page 7)

[41] Jozefowicz, R., Zaremba, W., and Sutskever, I. (2015). An empirical exploration of

recurrent network architectures. In Proceedings of the 32Nd International Conference

on International Conference on Machine Learning - Volume 37, ICML’15, pages 2342–

2350. JMLR.org. (page 38)

[42] Kalman, R. E. (1960). On the General Theory of Control Systems. (page 32)

[43] Khoreva, A., Galasso, F., Hein, M., and Schiele, B. (2015). Classifier based graph

construction for video segmentation. 2015 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 951–960. (page 33)

[44] Kimoto, T., Asakawa, K., Yoda, M., and Takeoka, M. (1990). Stock market prediction

system with modular neural networks. In 1990 IJCNN International Joint Conference

on Neural Networks, pages 1–6 vol.1. (page 9)

[45] Kingma, D. and Ba, J. (2014). Adam: A method for stochastic optimization. Inter-

national Conference on Learning Representations. (page 18)

[46] Kirillov, A., He, K., Girshick, R. B., Rother, C., and Dollár, P. (2018). Panoptic

segmentation. CoRR, abs/1801.00868. (page 39)

[47] Koutnik, J., Greff, K., Gomez, F., and Schmidhuber, J. (2014). A clockwork rnn.

31st International Conference on Machine Learning, ICML 2014, 5. (page 38)

https://www.washingtonpost.com/news/wonk/wp/2016/02/25/how-much-of-your-life-youre-wasting-on-your-commute/
https://www.washingtonpost.com/news/wonk/wp/2016/02/25/how-much-of-your-life-youre-wasting-on-your-commute/

BIBLIOGRAPHY 89

[48] Kowsari, K., Heidarysafa, M., Brown, D. E., Meimandi, K. J., and Barnes,

L. E. (2018). RMDL: random multimodel deep learning for classification. CoRR,

abs/1805.01890. (page 31)

[49] Krähenbühl, P. and Koltun, V. (2011). Efficient inference in fully connected crfs with

gaussian edge potentials. In Shawe-Taylor, J., Zemel, R. S., Bartlett, P. L., Pereira,

F., and Weinberger, K. Q., editors, Advances in Neural Information Processing Systems

24, pages 109–117. Curran Associates, Inc. (page 31)

[50] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). 2012 AlexNet. Advances In

Neural Information Processing Systems, pages 1–9. (page 7, 19)

[51] Kundu, A., Vineet, V., and Koltun, V. (2016). Feature space optimization for se-

mantic video segmentation. In 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 3168–3175. (page 33)

[52] Lafferty, J. D., McCallum, A., and Pereira, F. C. N. (2001). Conditional random

fields: Probabilistic models for segmenting and labeling sequence data. In Proceedings

of the Eighteenth International Conference on Machine Learning, ICML ’01, pages 282–

289, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc. (page 33)

[53] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning

applied to document recognition. Proceedings of the IEEE. (page 9, 19)

[54] Li, S. Z. (2001). Markov random field modeling in image analysis. Springer. (page 33)

[55] Li, Y., Shi, J., and Lin, D. (2018). Low-Latency Video Semantic Segmentation.

(page 33, 38)

[56] Long, J., Shelhamer, E., and Darrell, T. (2015). Fully convolutional networks for

semantic segmentation. In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). (page 19, 31)

[57] Lowe, D. G. (2004). Distinctive Image Features from Scale-Invariant Keypoints.

International Journal of Computer Vision, 60(2):91–110. (page 32)

[58] Lu, Y., Lu, C., and Tang, C. K. (2017). Online Video Object Detection Using

Association LSTM. Proceedings of the IEEE International Conference on Computer

Vision, 2017-Octob:2363–2371. (page 33, 36)

[59] Luc, P., Neverova, N., Couprie, C., Verbeek, J., and LeCun, Y. (2017). Predicting

deeper into the future of semantic segmentation. 2017 IEEE International Conference

on Computer Vision (ICCV), pages 648–657. (page 34, 53)

[60] Lucas, B. D. and Kanade, T. (1981). An iterative image registration technique with

an application to stereo vision. In Proceedings of the 7th International Joint Conference

90

on Artificial Intelligence - Volume 2, IJCAI’81, pages 674–679, San Francisco, CA, USA.

Morgan Kaufmann Publishers Inc. (page 33)

[61] Luthon, F., Caplier, A., and Lievin, M. (1999). Spatiotemporal mrf approach to video

segmentation: Application to motion detection and lip segmentation. Signal Processing,

76:61–80. (page 33)

[62] Lyu, Y. and Huang, X. (2018). Road Segmentation Using CNN with GRU. (page 37)

[63] Maas, A. L., Hannun, A. Y., and Ng, A. Y. (2013). Rectifier nonlinearities improve

neural network acoustic models. In ICML Workshop on Deep Learning for Audio, Speech

and Language Processing. (page 15)

[64] Maass, W. (1997). Networks of spiking neurons: The third generation of neural

network models. Neural Networks, 10(9):1659 – 1671. (page 13)

[65] Mandal, M. K. (2003). The Human Visual System and Perception, pages 33–56.

Springer US, Boston, MA. (page 1)

[66] Mehta, S., Rastegari, M., Caspi, A., Shapiro, L. G., and Hajishirzi, H. (2018). Espnet:

Efficient spatial pyramid of dilated convolutions for semantic segmentation. In ECCV.

(page 4, 32, 45, 62, 64)

[67] Nair, V. and Hinton, G. E. (2010). Rectified linear units improve restricted boltz-

mann machines. In Proceedings of the 27th International Conference on International

Conference on Machine Learning, ICML’10, pages 807–814, USA. Omnipress. (page 14)

[68] Neuhold, G., Ollmann, T., Rota Bulò, S., and Kontschieder, P. (2017). The mapillary

vistas dataset for semantic understanding of street scenes. In International Conference

on Computer Vision (ICCV). (page 11, 39, 81)

[69] Oliu, M., Selva, J., and Escalera, S. (2018). Folded recurrent neural networks for

future video prediction. In Ferrari, V., Hebert, M., Sminchisescu, C., and Weiss, Y.,

editors, Computer Vision – ECCV 2018, pages 745–761, Cham. Springer International

Publishing. (page 37)

[70] Payer, C., Štern, D., Neff, T., Bischof, H., and Urschler, M. (2018). Instance segmen-

tation and tracking with cosine embeddings and recurrent hourglass networks. In Frangi,

A. F., Schnabel, J. A., Davatzikos, C., Alberola-López, C., and Fichtinger, G., editors,

Medical Image Computing and Computer Assisted Intervention – MICCAI 2018, pages

3–11, Cham. Springer International Publishing. (page 37)

[71] Ranjan, A. and Black, M. J. (2017). Optical flow estimation using a spatial pyra-

mid network. Proceedings - 30th IEEE Conference on Computer Vision and Pattern

Recognition, CVPR 2017, 2017-Janua:2720–2729. (page 33, 53)

BIBLIOGRAPHY 91

[72] Ros, G., Sellart, L., Materzynska, J., Vazquez, D., and Lopez, A. M. (2016). The

synthia dataset: A large collection of synthetic images for semantic segmentation of

urban scenes. In The IEEE Conference on Computer Vision and Pattern Recognition

(CVPR). (page 40)

[73] Rosten, E. and Drummond, T. (2006). Machine Learning for High-Speed Corner De-

tection. In Computer Vision – ECCV 2006, pages 430–443, Berlin, Heidelberg. Springer

Berlin Heidelberg. (page 32)

[74] Rudolph, G. and Voelzke, U. (2017). Three sensor types drive au-

tonomous vehicles. https://www.fierceelectronics.com/components/

three-sensor-types-drive-autonomous-vehicles. (page 5)

[75] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,

Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C., and Fei-Fei, L. (2015). ImageNet

Large Scale Visual Recognition Challenge. International Journal of Computer Vision

(IJCV), 115(3):211–252. (page 19)

[76] Shah, S., Dey, D., Lovett, C., and Kapoor, A. (2018). Airsim: High-fidelity visual

and physical simulation for autonomous vehicles. In Field and Service Robotics, pages

621–635. Springer International Publishing. (page 40)

[77] Shi, J. and Malik, J. (2000). Normalized Cuts and Image Segmentation Part of

the Electrical and Computer Engineering Commons Recommended Citation Normal-

ized Cuts and Image Segmentation Normalized Cuts and Image Segmentation. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 22(8):888–905. (page 30,

33)

[78] Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-K., and Woo, W.-C. (2015).

Convolutional lstm network: A machine learning approach for precipitation nowcasting.

In NIPS. (page 36)

[79] Srivastava, N., Mansimov, E., and Salakhutdinov, R. R. (2015). Unsupervised learn-

ing of video representations using lstms. In ICML. (page 36)

[80] Stout, D. W. (2019). Social media statistics. https://dustinstout.com/

social-media-statistics/. (page 2, 3)

[81] Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., and

Fergus, R. (2013). Intriguing properties of neural networks. pages 1–10. (page 31)

[82] Tompson, J. J., Jain, A., LeCun, Y., and Bregler, C. (2014). Joint training of a con-

volutional network and a graphical model for human pose estimation. In Ghahramani,

Z., Welling, M., Cortes, C., Lawrence, N. D., and Weinberger, K. Q., editors, Advances

in Neural Information Processing Systems 27, pages 1799–1807. Curran Associates, Inc.

(page 7)

https://www.fierceelectronics.com/components/three-sensor-types-drive-autonomous-vehicles
https://www.fierceelectronics.com/components/three-sensor-types-drive-autonomous-vehicles
https://dustinstout.com/social-media-statistics/
https://dustinstout.com/social-media-statistics/

92

[83] Toshev, A. and Szegedy, C. (2014). Deeppose: Human pose estimation via deep

neural networks. In The IEEE Conference on Computer Vision and Pattern Recognition

(CVPR). (page 19)

[84] Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun, M.,

Cao, Y., Gao, Q., Macherey, K., Klingner, J., Shah, A., Johnson, M., Liu, X., Kaiser, L.,

Gouws, S., Kato, Y., Kudo, T., Kazawa, H., Stevens, K., Kurian, G., Patil, N., Wang,

W., Young, C., Smith, J., Riesa, J., Rudnick, A., Vinyals, O., Corrado, G., Hughes,

M., and Dean, J. (2016). Google’s neural machine translation system: Bridging the gap

between human and machine translation. CoRR, abs/1609.08144. (page 9)

[85] Xie, S., Girshick, R. B., Dollár, P., Tu, Z., and He, K. (2016). Aggregated residual

transformations for deep neural networks. CoRR, abs/1611.05431. (page 81)

[86] Yu, F. and Koltun, V. (2016). Multi-scale context aggregation by dilated convolutions.

CoRR, abs/1511.07122. (page 25)

[87] Yu, R. (2019). A brief review of object detection and semantic-

segmentation. https://richardyu114.github.io/2019/02/27/

A-Brief-Review-of-Object-Detection-and-Semantic-Segmentation/. (page 30)

[88] Zhao, H., Shi, J., Qi, X., Wang, X., and Jia, J. (2017). Pyramid scene parsing network.

In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages

6230–6239. (page 81)

https://richardyu114.github.io/2019/02/27/A-Brief-Review-of-Object-Detection-and-Semantic-Segmentation/
https://richardyu114.github.io/2019/02/27/A-Brief-Review-of-Object-Detection-and-Semantic-Segmentation/

	Introduction
	Image Analysis and Understanding
	Video Data
	Algorithm on Street Scenes

	Machine Learning and Neural Networks
	Mathematical Notation and Conventions
	Machine Learning
	Classification & Regression
	Discriminative Models & Generative Models
	Supervised Learning & Unsupervised Learning
	Training the Algorithm

	Neural Networks
	Components of a Neural Network
	Activation Function
	Layers of Neurons

	Training a Neural Network

	Convolutional Neural Networks
	The Convolution Operation
	The Convolutional Layer
	Different Types of Convolutions
	Multiple Convolutional Layers in a CNN

	Semantic Segmentation and Video Processing
	Semantic Image Segmentation
	Segmentation
	Semantics
	Semantic Segmentation with CNNs

	Video Processing
	Optical Flow
	Frame-to-Frame Consistency

	Video Semantic Segmentation with Recurrent Neural Networks
	Vanilla RNN
	LSTM
	LSTM and Video
	Convolutional LSTM
	GRU
	LSTM vs GRU

	Street Scene Data Sets
	Real World Data
	Synthetic Street Scene Data

	Frame-to-Frame Consistent Semantic Segmentation
	Network Architectures
	SSNet
	ESPNet

	Video Data
	Semantic Segmentation Oracle
	Synthetic Data

	ConvLSTM
	VSSNet
	ESPNet_L1

	Time Convolution
	ESPNet_T

	Consistency Constraint

	Experiments
	Hardware and Software
	Semantic Segmentation with SSNet
	Training Setting
	Results

	SSNet with Temporal Information Flow
	Validation Metrics
	Training with LSTM

	Semantic Segmentation with ESPNet
	Sequence Training

	ESPNet with Temporal Information Flow
	ConvTime Layer
	ConvLSTM Layer
	Network Visualization

	Adding Synthetic Data

	Conclusion
	Positives and Negatives
	Limitations

	Future Work
	List of Acronyms
	Bibliography

